BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17937309)

  • 1. Highly efficient decomposition of organic dyes by aqueous-fiber phase transfer and in situ catalytic oxidation using fiber-supported cobalt phthalocyanine.
    Chen W; Lu W; Yao Y; Xu M
    Environ Sci Technol; 2007 Sep; 41(17):6240-5. PubMed ID: 17937309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal of dyes in water using chitosan microsphere supported cobalt (II) tetrasulfophthalocyanine with H2O2.
    Shen C; Song S; Zang L; Kang X; Wen Y; Liu W; Fu L
    J Hazard Mater; 2010 May; 177(1-3):560-6. PubMed ID: 20056322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.
    El-Desoky HS; Ghoneim MM; El-Sheikh R; Zidan NM
    J Hazard Mater; 2010 Mar; 175(1-3):858-65. PubMed ID: 19926217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes.
    Shen C; Wen Y; Shen Z; Wu J; Liu W
    J Hazard Mater; 2011 Oct; 193():209-15. PubMed ID: 21813233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. Reactive Red 120 during ozonation.
    Zhang F; Yediler A; Liang X
    Chemosphere; 2007 Mar; 67(4):712-7. PubMed ID: 17188325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta.
    Baratto MC; Juarez-Moreno K; Pogni R; Basosi R; Vazquez-Duhalt R
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8683-92. PubMed ID: 25567062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation.
    So CM; Cheng MY; Yu JC; Wong PK
    Chemosphere; 2002 Feb; 46(6):905-12. PubMed ID: 11922071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced oxidation processes in azo dye wastewater treatment.
    Papić S; Koprivanac N; Bozić AL; Vujević D; Dragicević SK; Kusić H; Peternel I
    Water Environ Res; 2006 Jun; 78(6):572-9. PubMed ID: 16894983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.
    Rodríguez A; García J; Ovejero G; Mestanza M
    Water Sci Technol; 2009; 60(8):1989-99. PubMed ID: 19844045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of by-products of chlorination and photoelectrocatalytic chlorination of an azo dye.
    de Oliveira RL; Anderson MA; Umbuzeiro Gde A; Zocolo GJ; Zanoni MV
    J Hazard Mater; 2012 Feb; 205-206():1-9. PubMed ID: 22230753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation of an azo dye of the textile industry.
    Cisneros RL; Espinoza AG; Litter MI
    Chemosphere; 2002 Jul; 48(4):393-9. PubMed ID: 12152740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinative dyebath treatment with activated carbon and UV/H2O2: a case study on Everzol Black-GSP.
    Ince NH; Hasan DA; Ustün B; Tezcanli G
    Water Sci Technol; 2002; 46(4-5):51-8. PubMed ID: 12361048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsubstituted metallophthalocyanine catalysts for the removal of endocrine disrupting compounds using H
    Kruid J; Fogel R; Limson J
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32346-32357. PubMed ID: 30229492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.
    Yang S; Li L; Xiao T; Zhang J; Shao X
    Environ Technol; 2017 Mar; 38(5):598-605. PubMed ID: 27383740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative degradation of azo dyes using tourmaline.
    Wang C; Zhang Y; Yu L; Zhang Z; Sun H
    J Hazard Mater; 2013 Sep; 260():851-9. PubMed ID: 23876254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical degradation of Basic Blue 41 dye assisted by nanoTiO2 and H2O2.
    Abbasi M; Asl NR
    J Hazard Mater; 2008 May; 153(3):942-7. PubMed ID: 17950996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of reactive dyes to granulated iron hydroxide and its oxidative regeneration.
    Kornmüller A; Karcher S; Jekel M
    Water Sci Technol; 2002; 46(4-5):43-50. PubMed ID: 12361044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supported cobalt oxide on graphene oxide: highly efficient catalysts for the removal of Orange II from water.
    Shi P; Su R; Zhu S; Zhu M; Li D; Xu S
    J Hazard Mater; 2012 Aug; 229-230():331-9. PubMed ID: 22738772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic treatment of waste: studies on discoloration of an industrial azo dye effluent.
    Vaghela SS; Jethva AD; Gohil MS; Subbarayappa A; Gour PM; Susarla VS; Gadde R; Ghosh PK
    Ann Chim; 2003; 93(9-10):841-8. PubMed ID: 14672378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.