These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 17937317)

  • 21. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.
    McLeod JD; Brinkman GL; Milford JB
    Environ Sci Technol; 2014 Nov; 48(22):13036-44. PubMed ID: 25329514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.
    Sathre R; Masanet E
    Environ Sci Technol; 2012 Sep; 46(17):9768-76. PubMed ID: 22857130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Options for near-term phaseout of CO(2) emissions from coal use in the United States.
    Kharecha PA; Kutscher CF; Hansen JE; Mazria E
    Environ Sci Technol; 2010 Jun; 44(11):4050-62. PubMed ID: 20429611
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector.
    Lu X; Salovaara J; McElroy MB
    Environ Sci Technol; 2012 Mar; 46(5):3014-21. PubMed ID: 22321206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.
    Afon Y; Ervin D
    J Air Waste Manag Assoc; 2008 Mar; 58(3):404-11. PubMed ID: 18376643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.
    Johnson TL; Keith DW
    J Air Waste Manag Assoc; 2001 Oct; 51(10):1452-9. PubMed ID: 11686250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with Humidity Swing Direct Air Capture of CO
    van der Giesen C; Meinrenken CJ; Kleijn R; Sprecher B; Lackner KS; Kramer GJ
    Environ Sci Technol; 2017 Jan; 51(2):1024-1034. PubMed ID: 27935700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implications of shale gas development for climate change.
    Newell RG; Raimi D
    Environ Sci Technol; 2014; 48(15):8360-8. PubMed ID: 24754840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Costs for integrating wind into the future ERCOT system with related costs for savings in CO2 emissions.
    Lu X; McElroy MB; Sluzas NA
    Environ Sci Technol; 2011 Apr; 45(7):3160-6. PubMed ID: 21375280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emissions and energy efficiency assessment of baseload wind energy systems.
    Denholm P; Kulcinski GL; Holloway T
    Environ Sci Technol; 2005 Mar; 39(6):1903-11. PubMed ID: 15819254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expected ozone benefits of reducing nitrogen oxide (NO
    Vinciguerra T; Bull E; Canty T; He H; Zalewsky E; Woodman M; Aburn G; Ehrman S; Dickerson RR
    J Air Waste Manag Assoc; 2017 Mar; 67(3):279-291. PubMed ID: 27650304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Life-cycle greenhouse gas assessment of Nigerian liquefied natural gas addressing uncertainty.
    Safaei A; Freire F; Henggeler Antunes C
    Environ Sci Technol; 2015 Mar; 49(6):3949-57. PubMed ID: 25621534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of lignin in reducing life-cycle carbon emissions, water use, and cost for United States cellulosic biofuels.
    Scown CD; Gokhale AA; Willems PA; Horvath A; McKone TE
    Environ Sci Technol; 2014; 48(15):8446-55. PubMed ID: 24988448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The environmental and economic sustainability of carbon capture and storage.
    Hardisty PE; Sivapalan M; Brooks P
    Int J Environ Res Public Health; 2011 May; 8(5):1460-77. PubMed ID: 21655130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparision of two different ways of landfill gas utilization through greenhouse gas emission reductions analysis and financial analysis.
    Han H; Qian G; Long J; Li S
    Waste Manag Res; 2009 Nov; 27(9):922-7. PubMed ID: 19767323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.
    Clark VR; Herzog HJ
    Environ Sci Technol; 2014 Jul; 48(14):7723-9. PubMed ID: 24960207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels.
    McKechnie J; Colombo S; Chen J; Mabee W; MacLean HL
    Environ Sci Technol; 2011 Jan; 45(2):789-95. PubMed ID: 21142063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative evaluation of biomass power generation systems in China using hybrid life cycle inventory analysis.
    Liu H; Yin X; Wu C
    ScientificWorldJournal; 2014; 2014():735431. PubMed ID: 25383383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.
    Peer RA; Garrison JB; Timms CP; Sanders KT
    Environ Sci Technol; 2016 Apr; 50(8):4537-45. PubMed ID: 26967826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.