BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17937405)

  • 1. Transformations in CDHA/OCP/beta-TCP scaffold during ageing in simulated body fluid at 36.5 degrees C.
    Morejón-Alonso L; Carrodeguas RG; García-Menocal JA
    J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):386-93. PubMed ID: 17937405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TEM study of calcium phosphate precipitation on HA/TCP ceramics.
    Leng Y; Chen J; Qu S
    Biomaterials; 2003 Jun; 24(13):2125-31. PubMed ID: 12699649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.
    Vani R; Girija EK; Elayaraja K; Prakash Parthiban S; Kesavamoorthy R; Narayana Kalkura S
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S43-8. PubMed ID: 18560768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of bone-like apatite enhanced by hydrolysis of octacalcium phosphate crystals deposited in collagen matrix.
    Honda Y; Kamakura S; Sasaki K; Suzuki O
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):281-9. PubMed ID: 16850470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nabo-β-TCP synthesized via microwave treatment.
    Abdel-Fattah WI; Elkhooly TA
    Biomed Mater; 2010 Jun; 5(3):35015. PubMed ID: 20526025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass.
    Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD
    J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions.
    Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics.
    Duan YR; Zhang ZR; Wang CY; Chen JY; Zhang XD
    J Mater Sci Mater Med; 2004 Nov; 15(11):1205-11. PubMed ID: 15880929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and biological properties of PLLA/beta-TCP composites reinforced by chitosan fibers.
    Wang J; Qu L; Meng X; Gao J; Li H; Wen G
    Biomed Mater; 2008 Jun; 3(2):025004. PubMed ID: 18458373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive ceramic composites sintered from hydroxyapatite and silica at 1,200 degrees C: preparation, microstructures and in vitro bone-like layer growth.
    Li XW; Yasuda HY; Umakoshi Y
    J Mater Sci Mater Med; 2006 Jun; 17(6):573-81. PubMed ID: 16691357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration mechanism of partially amorphized β-tricalcium phosphate.
    Hurle K; Neubauer J; Goetz-Neunhoeffer F
    Acta Biomater; 2017 May; 54():429-440. PubMed ID: 28288934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strontium substituted bioactive glasses for tissue engineered scaffolds: the importance of octacalcium phosphate.
    Sriranganathan D; Kanwal N; Hing KA; Hill RG
    J Mater Sci Mater Med; 2016 Feb; 27(2):39. PubMed ID: 26704556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.
    Hesaraki S; Safari M; Shokrgozar MA
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of porous alginate scaffolds containing various amounts of octacalcium phosphate (OCP) crystals.
    Shiraishi N; Anada T; Honda Y; Masuda T; Sasaki K; Suzuki O
    J Mater Sci Mater Med; 2010 Mar; 21(3):907-14. PubMed ID: 19851838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The synergistic effects of Chinese herb and injectable calcium silicate/β-tricalcium phosphate composite on an osteogenic accelerator in vitro.
    Huang MH; Kao CT; Chen YW; Hsu TT; Shieh DE; Huang TH; Shie MY
    J Mater Sci Mater Med; 2015 Apr; 26(4):161. PubMed ID: 25786397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference.
    Kasten P; Vogel J; Beyen I; Weiss S; Niemeyer P; Leo A; Lüginbuhl R
    J Biomater Appl; 2008 Sep; 23(2):169-88. PubMed ID: 18632770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.