These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17938116)

  • 1. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method.
    Moore JR; Maguire DA
    Tree Physiol; 2008 Jan; 28(1):75-83. PubMed ID: 17938116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.
    Cermák J; Kucera J; Bauerle WL; Phillips N; Hinckley TM
    Tree Physiol; 2007 Feb; 27(2):181-98. PubMed ID: 17241961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in specific needle area of old-growth Douglas-fir in relation to needle age, within-crown position and epicormic shoot production.
    Ishii H; Ford ED; Boscolo ME; Manriquez AC; Wilson ME; Hinckley TM
    Tree Physiol; 2002 Jan; 22(1):31-40. PubMed ID: 11772553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas in stems: abundance and potential consequences for tree biomechanics.
    Gartner BL; Moore JR; Gardiner BA
    Tree Physiol; 2004 Nov; 24(11):1239-50. PubMed ID: 15339733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple resonance damping or how do trees escape dangerously large oscillations?
    Spatz HC; Brüchert F; Pfisterer J
    Am J Bot; 2007 Oct; 94(10):1603-11. PubMed ID: 21636359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age- and position-related changes in hydraulic versus mechanical dysfunction of xylem: inferring the design criteria for Douglas-fir wood structure.
    Domec JC; Gartner BL
    Tree Physiol; 2002 Feb; 22(2-3):91-104. PubMed ID: 11830406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining how aging Pseudotsuga and Abies compensate for multiple stresses through multi-criteria assessment of a functional-structural model.
    Kennedy MC; Ford ED; Hinckley TM
    Tree Physiol; 2010 Jan; 30(1):3-22. PubMed ID: 19945994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillation damping in trees.
    Spatz HC; Theckes B
    Plant Sci; 2013 Jun; 207():66-71. PubMed ID: 23602100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.
    Monserud RA; Marshall JD
    Tree Physiol; 2001 Sep; 21(15):1087-102. PubMed ID: 11581016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite element model for investigating effects of aerial architecture on tree oscillations.
    Sellier D; Fourcaud T; Lac P
    Tree Physiol; 2006 Jun; 26(6):799-806. PubMed ID: 16510396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings.
    Schoonmaker AL; Teste FP; Simard SW; Guy RD
    Oecologia; 2007 Dec; 154(3):455-66. PubMed ID: 17885766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliance on stored water increases with tree size in three species in the Pacific Northwest.
    Phillips NG; Ryan MG; Bond BJ; McDowell NG; Hinckley TM; Cermák J
    Tree Physiol; 2003 Mar; 23(4):237-45. PubMed ID: 12566259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Needle anatomy changes with increasing tree age in Douglas-fir.
    Apple M; Tiekotter K; Snow M; Young J; Soeldner A; Phillips D; Tingey D; Bond BJ
    Tree Physiol; 2002 Feb; 22(2-3):129-36. PubMed ID: 11830409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.
    Moore GW; Bond BJ; Jones JA; Phillips N; Meinzer FC
    Tree Physiol; 2004 May; 24(5):481-91. PubMed ID: 14996653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees.
    McDowell NG; Phillips N; Lunch C; Bond BJ; Ryan MG
    Tree Physiol; 2002 Aug; 22(11):763-74. PubMed ID: 12184980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental decline in height growth in Douglas-fir.
    Bond BJ; Czarnomski NM; Cooper C; Day ME; Greenwood MS
    Tree Physiol; 2007 Mar; 27(3):441-53. PubMed ID: 17241986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of dry matter partitioning in trees.
    Bartelink HH
    Tree Physiol; 1998 Feb; 18(2):91-101. PubMed ID: 12651393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of gas exchange to reversible changes in whole-plant transpiration rate in two conifer species.
    Warren CR; Livingston NJ; Turpin DH
    Tree Physiol; 2003 Aug; 23(12):793-803. PubMed ID: 12865245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile and Within-Needle Terpene Changes to Douglas-fir Trees Associated With Douglas-fir Beetle (Coleoptera: Curculionidae) Attack.
    Giunta AD; Runyon JB; Jenkins MJ; Teich M
    Environ Entomol; 2016 Aug; 45(4):920-9. PubMed ID: 27231258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.