These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 17938117)
1. Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances. Campanello PI; Gatti MG; Goldstein G Tree Physiol; 2008 Jan; 28(1):85-94. PubMed ID: 17938117 [TBL] [Abstract][Full Text] [Related]
2. Hydraulic architecture and photoinhibition influence spatial distribution of the arborescent palm Euterpe edulis in subtropical forests. Gatti MG; Campanello PI; Villagra M; Montti L; Goldstein G Tree Physiol; 2014 Jun; 34(6):630-9. PubMed ID: 24898220 [TBL] [Abstract][Full Text] [Related]
3. Removal of nutrient limitations in forest gaps enhances growth rate and resistance to cavitation in subtropical canopy tree species differing in shade tolerance. Villagra M; Campanello PI; Montti L; Goldstein G Tree Physiol; 2013 Mar; 33(3):285-96. PubMed ID: 23436182 [TBL] [Abstract][Full Text] [Related]
4. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Santiago LS; Goldstein G; Meinzer FC; Fisher JB; Machado K; Woodruff D; Jones T Oecologia; 2004 Aug; 140(4):543-50. PubMed ID: 15232729 [TBL] [Abstract][Full Text] [Related]
5. Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Clearwater MJ; Meinzer FC Tree Physiol; 2001 Jul; 21(10):683-90. PubMed ID: 11446997 [TBL] [Abstract][Full Text] [Related]
6. Effects of water stress on irradiance acclimation of leaf traits in almond trees. Egea G; González-Real MM; Baille A; Nortes PA; Conesa MR; Ruiz-Salleres I Tree Physiol; 2012 Apr; 32(4):450-63. PubMed ID: 22440881 [TBL] [Abstract][Full Text] [Related]
7. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Meinzer FC; Campanello PI; Domec JC; Genoveva Gatti M; Goldstein G; Villalobos-Vega R; Woodruff DR Tree Physiol; 2008 Nov; 28(11):1609-17. PubMed ID: 18765366 [TBL] [Abstract][Full Text] [Related]
8. Acclimation of leaves to contrasting irradiance in juvenile trees differing in shade tolerance. Wyka T; Robakowski P; Zytkowiak R Tree Physiol; 2007 Sep; 27(9):1293-306. PubMed ID: 17545129 [TBL] [Abstract][Full Text] [Related]
9. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
10. Hydraulic architecture and photosynthetic capacity as constraints on release from suppression in Douglas-fir and western hemlock. Renninger HJ; Meinzer FC; Gartner BL Tree Physiol; 2007 Jan; 27(1):33-42. PubMed ID: 17169904 [TBL] [Abstract][Full Text] [Related]
11. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO₂ concentration. Domec JC; Schäfer K; Oren R; Kim HS; McCarthy HR Tree Physiol; 2010 Aug; 30(8):1001-15. PubMed ID: 20566583 [TBL] [Abstract][Full Text] [Related]
12. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening. Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973 [TBL] [Abstract][Full Text] [Related]
13. Constraints on light interception efficiency due to shoot architecture in broad-leaved Nothofagus species. Niinemets U; Cescatti A; Christian R Tree Physiol; 2004 Jun; 24(6):617-30. PubMed ID: 15059762 [TBL] [Abstract][Full Text] [Related]
14. Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. De Guzman ME; Santiago LS; Schnitzer SA; Álvarez-Cansino L Tree Physiol; 2017 Oct; 37(10):1404-1414. PubMed ID: 27672189 [TBL] [Abstract][Full Text] [Related]
17. Shade tree species affect gas exchange and hydraulic conductivity of cacao cultivars in an agroforestry system. Ávila-Lovera E; Blanco H; Móvil O; Santiago LS; Tezara W Tree Physiol; 2021 Feb; 41(2):240-253. PubMed ID: 33313911 [TBL] [Abstract][Full Text] [Related]
18. Relative importance of photosynthetic physiology and biomass allocation for tree seedling growth across a broad light gradient. Montgomery R Tree Physiol; 2004 Feb; 24(2):155-67. PubMed ID: 14676032 [TBL] [Abstract][Full Text] [Related]
19. Plasticity of shoot and needle morphology and photosynthesis of two Picea species with different site preferences in northern Japan. Ishii H; Kitaoka S; Fujisaki T; Maruyama Y; Koike T Tree Physiol; 2007 Nov; 27(11):1595-605. PubMed ID: 17669749 [TBL] [Abstract][Full Text] [Related]
20. Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. Urban O; Kosvancová M; Marek MV; Lichtenthaler HK Tree Physiol; 2007 Aug; 27(8):1207-15. PubMed ID: 17472946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]