These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 17938118)

  • 41. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees.
    Phillips N; Bond BJ; McDowell NG; Ryan MG
    Tree Physiol; 2002 Feb; 22(2-3):205-11. PubMed ID: 11830417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana.
    Veenendaal EM; Mantlana KB; Pammenter NW; Weber P; Huntsman-Mapila P; Lloyd J
    Tree Physiol; 2008 Mar; 28(3):417-24. PubMed ID: 18171665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Water use in four model tropical plant associations established in the lowlands of Costa Rica.
    Gutiérrez-Soto MV; Ewel JJ
    Rev Biol Trop; 2008 Dec; 56(4):1947-57. PubMed ID: 19419093
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soil-plant hydrology of indigenous and exotic trees in an Ethiopian montane forest.
    Fritzsche F; Abate A; Fetene M; Beck E; Weise S; Guggenberger G
    Tree Physiol; 2006 Aug; 26(8):1043-54. PubMed ID: 16651254
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The partitioning of water uptake between growth forms in a Neotropical savanna: do herbs exploit a third water source niche?
    Rossatto DR; da Silveira Lobo Sternberg L; Franco AC
    Plant Biol (Stuttg); 2013 Jan; 15(1):84-92. PubMed ID: 22672316
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydraulic redistribution of soil water by neotropical savanna trees.
    Scholz FG; Bucci SJ; Goldstein G; Meinzer FC; Franco AC
    Tree Physiol; 2002 Jun; 22(9):603-12. PubMed ID: 12069916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Water use of re-vegetation pioneer tree species Schima superba and Acacia mangium in hilly land of South China].
    Zhang ZZ; Zhao P; Ni GY; Zhu LW; Zhao XH; Zhao PQ; Niu JF
    Ying Yong Sheng Tai Xue Bao; 2014 Apr; 25(4):931-9. PubMed ID: 25011282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential summer water use by Pinus edulis and Juniperus osteosperma reflects contrasting hydraulic characteristics.
    West AG; Hultine KR; Jackson TL; Ehleringer JR
    Tree Physiol; 2007 Dec; 27(12):1711-20. PubMed ID: 17938102
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-specific and species-specific tree response to seasonal drought in tropical dry forests.
    Santos EA; Haro-Carrión X; Oshun J
    Sci Total Environ; 2022 Dec; 850():157908. PubMed ID: 35944638
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size.
    Fravolini A; Hultine KR; Brugnoli E; Gazal R; English NB; Williams DG
    Oecologia; 2005 Aug; 144(4):618-27. PubMed ID: 15891829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability.
    Querejeta JI; Egerton-Warburton LM; Allen MF
    Ecology; 2009 Mar; 90(3):649-62. PubMed ID: 19341136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors].
    Zhao P; Rao X; Ma L; Cai X; Zeng X
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1149-56. PubMed ID: 17044483
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Forest system hydraulic conductance: partitioning tree and soil components.
    Binks O; Cernusak LA; Liddell M; Bradford M; Coughlin I; Carle H; Bryant C; Dunn E; Oliveira R; Mencuccini M; Meir P
    New Phytol; 2022 Feb; 233(4):1667-1681. PubMed ID: 34861052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought.
    David TS; Henriques MO; Kurz-Besson C; Nunes J; Valente F; Vaz M; Pereira JS; Siegwolf R; Chaves MM; Gazarini LC; David JS
    Tree Physiol; 2007 Jun; 27(6):793-803. PubMed ID: 17331898
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species.
    Bucci SJ; Scholz FG; Goldstein G; Meinzer FC; Arce ME
    Oecologia; 2009 Jul; 160(4):631-41. PubMed ID: 19330355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons.
    Wang X; Ciais P; Wang Y; Zhu D
    Glob Chang Biol; 2018 Oct; 24(10):4709-4717. PubMed ID: 29851198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transpiration characteristics of a rubber plantation in central Cambodia.
    Kobayashi N; Kumagai T; Miyazawa Y; Matsumoto K; Tateishi M; Lim TK; Mudd RG; Ziegler AD; Giambelluca TW; Yin S
    Tree Physiol; 2014 Mar; 34(3):285-301. PubMed ID: 24646689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.