BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1793812)

  • 1. Molecular dynamics simulation of Lewis blood groups and related oligosaccharides.
    Mukhopadhyay C; Bush CA
    Biopolymers; 1991 Dec; 31(14):1737-46. PubMed ID: 1793812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations and the conformational mobility of blood group oligosaccharides.
    Yan ZY; Bush CA
    Biopolymers; 1990; 29(4-5):799-811. PubMed ID: 2383645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulation of oligosaccharides containing N-acetyl neuraminic acid.
    Mukhopadhyay C; Bush CA
    Biopolymers; 1994 Jan; 34(1):11-20. PubMed ID: 8110964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII.
    Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T
    Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the conformation of Lewis blood group oligosaccharides by simulation of two-dimensional nuclear Overhauser data.
    Cagas P; Bush CA
    Biopolymers; 1990; 30(11-12):1123-38. PubMed ID: 2081269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of the oligosaccharide receptor for E-selectin.
    Mukhopadhyay C; Miller KE; Bush CA
    Biopolymers; 1994 Jan; 34(1):21-9. PubMed ID: 7509201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational analysis and molecular dynamics simulation of alpha-(1-->2) and alpha-(1-->3) linked rhamnose oligosaccharides: reconciliation with optical rotation and NMR experiments.
    Hardy BJ; Bystricky S; Kovac P; Widmalm G
    Biopolymers; 1997 Jan; 41(1):83-96. PubMed ID: 8986121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformations of type 1 and type 2 oligosaccharides from ovarian cyst glycoprotein by nuclear Overhauser effect spectroscopy and T1 simulations.
    Cagas P; Bush CA
    Biopolymers; 1992 Mar; 32(3):277-92. PubMed ID: 1581547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation and NMR study of a blood group H trisaccharide.
    Widmalm G; Venable RM
    Biopolymers; 1994 Aug; 34(8):1079-88. PubMed ID: 8075388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disaccharide conformational flexibility. II. Molecular dynamics simulations of sucrose.
    Tran VH; Brady JW
    Biopolymers; 1990; 29(6-7):977-97. PubMed ID: 2369625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccharides: predictions from simulations of hyaluronan tetrasaccharides compared with hydrodynamic and X-ray fibre diffraction data.
    Almond A; Brass A; Sheehan JK
    J Mol Biol; 1998 Dec; 284(5):1425-37. PubMed ID: 9878361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of glycoprotein-glycans of immunoglobulin G and immunoglobulin M.
    Mukhopadhyay C
    Biopolymers; 1998 Mar; 45(3):177-90. PubMed ID: 9465784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined nuclear magnetic resonance and molecular dynamics study of the two structural motifs for mixed-linkage beta-glucans: methyl beta-cellobioside and methyl beta-laminarabioside.
    Christensen NJ; Hansen PI; Larsen FH; Folkerman T; Motawia MS; Engelsen SB
    Carbohydr Res; 2010 Feb; 345(4):474-86. PubMed ID: 20079487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes due to vicinal glycosylation: the branched alpha-L-Rhap(1-2)[beta-D-Galp(1-3)]-beta-D-Glc1-OMe trisaccharide compared with its parent disaccharides.
    Kozár T; Nifant'ev NE; Grosskurth H; Dabrowski U; Dabrowski J
    Biopolymers; 1998 Nov; 46(6):417-32. PubMed ID: 9798429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring the magnitude of internal motion in a complex hexasaccharide.
    Ganguly S; Xia J; Margulis C; Stanwyck L; Bush CA
    Biopolymers; 2011 Jan; 95(1):39-50. PubMed ID: 20683925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The flexibility of the Le(a)Le(x) tumor associated antigen central fragment studied by systematic and stochastic searches as well as dynamic simulations.
    Jackson TA; Robertson V; Imberty A; Auzanneau FI
    Bioorg Med Chem; 2009 Feb; 17(4):1514-26. PubMed ID: 19196517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glycosylation on structure and dynamics of MHC class I glycoprotein: a molecular dynamics study.
    Mandal TK; Mukhopadhyay C
    Biopolymers; 2001 Jul; 59(1):11-23. PubMed ID: 11343276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational study of asialo-GM1 (GA1) ganglioside.
    Park HJ; Jhon GJ; Han SJ; Kang YK
    Biopolymers; 1997; 42(1):19-35. PubMed ID: 9209156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of a cyclic-beta-(1-->2) glucan containing an alpha-(1-->6) linkage as a 'molecular alleviator' for the macrocyclic conformational strain.
    Kim H; Jeong K; Cho KW; Paik SR; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1011-9. PubMed ID: 16546149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.