These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17938956)

  • 1. Control of diferulate formation in dicotyledonous and gramineous cell-suspension cultures.
    Lindsay SE; Fry SC
    Planta; 2008 Jan; 227(2):439-52. PubMed ID: 17938956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures.
    Fry SC; Willis SC; Paterson AE
    Planta; 2000 Oct; 211(5):679-92. PubMed ID: 11089681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative coupling of a feruloyl-arabinoxylan trisaccharide (FAXX) in the walls of living maize cells requires endogenous hydrogen peroxide and is controlled by a low-Mr apoplastic inhibitor.
    Encina A; Fry SC
    Planta; 2005 Dec; 223(1):77-89. PubMed ID: 16049678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for intra- and extra-protoplasmic feruloylation and cross-linking in wheat seedling roots.
    Mastrangelo LI; Lenucci MS; Piro G; Dalessandro G
    Planta; 2009 Jan; 229(2):343-55. PubMed ID: 18974998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxaziclomefone, a new herbicide, inhibits wall expansion in maize cell-cultures without affecting polysaccharide biosynthesis, xyloglucan transglycosylation, peroxidase action or apoplastic ascorbate oxidation.
    O'Looney N; Fry SC
    Ann Bot; 2005 Nov; 96(6):1097-107. PubMed ID: 16144873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of dehydrodiferulates in maize resistance to pests and diseases.
    Santiago R; Malvar RA
    Int J Mol Sci; 2010 Feb; 11(2):691-703. PubMed ID: 20386661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling.
    Kerr EM; Fry SC
    Planta; 2004 May; 219(1):73-83. PubMed ID: 14872243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue-specific developmental changes in cell-wall ferulate and dehydrodiferulates in sugar beet.
    Wende G; Waldron KW; Smith AC; Brett CT
    Phytochemistry; 2000 Sep; 55(2):103-10. PubMed ID: 11065284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase.
    Burr SJ; Fry SC
    Mol Plant; 2009 Sep; 2(5):883-92. PubMed ID: 19825665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bonds.
    Burr SJ; Fry SC
    Plant J; 2009 May; 58(4):554-67. PubMed ID: 19154199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel O-D-galacturonoyl esters in the pectic polysaccharides of suspension-cultured plant cells.
    Brown JA; Fry SC
    Plant Physiol; 1993 Nov; 103(3):993-9. PubMed ID: 8022945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-formed xyloglucans and xylans increase in molecular weight in three distinct compartments of a maize cell-suspension culture.
    Kerr EM; Fry SC
    Planta; 2003 Jun; 217(2):327-39. PubMed ID: 12684788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide.
    Fry SC
    Biochem J; 1982 May; 203(2):493-504. PubMed ID: 7115300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boron bridging of rhamnogalacturonan-II in Rosa and arabidopsis cell cultures occurs mainly in the endo-membrane system and continues at a reduced rate after secretion.
    Begum RA; Fry SC
    Ann Bot; 2022 Nov; 130(5):703-715. PubMed ID: 36112021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells.
    de Castro M; Martínez-Rubio R; Acebes JL; Encina A; Fry SC; García-Angulo P
    J Integr Plant Biol; 2017 Jul; 59(7):475-495. PubMed ID: 28474461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize.
    Oliveira DM; Mota TR; Salatta FV; Sinzker RC; Končitíková R; Kopečný D; Simister R; Silva M; Goeminne G; Morreel K; Rencoret J; Gutiérrez A; Tryfona T; Marchiosi R; Dupree P; Del Río JC; Boerjan W; McQueen-Mason SJ; Gomez LD; Ferrarese-Filho O; Dos Santos WD
    Plant Cell Environ; 2020 Sep; 43(9):2172-2191. PubMed ID: 32441772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in cinnamic acid derivatives associated with the habituation of maize cells to dichlobenil.
    Mélida H; Jesús Álvarez ; Acebes JL; Encina A; Fry SC
    Mol Plant; 2011 Sep; 4(5):869-78. PubMed ID: 21571813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation and subsequent disposition of 14C-labelled plant cell wall material in the rat.
    Gray DF; Eastwood MA; Brydon WG; Fry SC
    Br J Nutr; 1993 Jan; 69(1):189-97. PubMed ID: 8457526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall.
    Popper ZA; Fry SC
    Planta; 2008 Mar; 227(4):781-94. PubMed ID: 17987313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of gibberellin-induced elongation growth of rice by feruloyl oligosaccharides.
    Ishii T; Nishijima T
    Plant Cell Physiol; 1995 Dec; 36(8):1447-51. PubMed ID: 8589928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.