These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 17939521)
41. Influence of temperature on developmental rate, wing length, and larval head capsule size of pestiferous midge Chironomus crassicaudatus (Diptera: Chironomidae). Frouz J; Ali A; Lobinske RJ J Econ Entomol; 2002 Aug; 95(4):699-705. PubMed ID: 12216809 [TBL] [Abstract][Full Text] [Related]
42. A multi-year study following BACI design reveals no short-term impact of Bti on chironomids (Diptera) in a floodplain in Eastern Austria. Wolfram G; Wenzl P; Jerrentrup H Environ Monit Assess; 2018 Nov; 190(12):709. PubMed ID: 30413967 [TBL] [Abstract][Full Text] [Related]
43. Using various lines of evidence to identify Chironomus species (Diptera: Chironomidae) in eastern Canadian lakes. Proulx I; Martin J; Carew M; Hare L Zootaxa; 2013 Nov; 3741():401-58. PubMed ID: 25113001 [TBL] [Abstract][Full Text] [Related]
44. Characterization of Bacillus thuringiensis isolates with potential for control of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Santos FP; Lopes J; Vilas-Bôas GT; Zequi JA Acta Trop; 2012 Apr; 122(1):64-70. PubMed ID: 22178674 [TBL] [Abstract][Full Text] [Related]
45. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. Broderick NA; Raffa KF; Handelsman J BMC Microbiol; 2010 Apr; 10():129. PubMed ID: 20423490 [TBL] [Abstract][Full Text] [Related]
46. A novel isolate of Bacillus thuringiensis serovar leesis that specifically exhibits larvicidal activity against the moth-fly, Telmatoscopus albipunctatus. Higuchi K; Saitoh H; Mizuki E; Hwang SH; Ohba M Syst Appl Microbiol; 1998 Mar; 21(1):144-50. PubMed ID: 9741119 [TBL] [Abstract][Full Text] [Related]
47. Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species. Nayar JK; Knight JW; Ali A; Carlson DB; O'Bryan PD J Am Mosq Control Assoc; 1999 Mar; 15(1):32-42. PubMed ID: 10342266 [TBL] [Abstract][Full Text] [Related]
48. High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over rates. Lundström JO; Brodin Y; Schäfer ML; Vinnersten TZ; Ostman O Bull Entomol Res; 2010 Aug; 100(4):433-44. PubMed ID: 19939319 [TBL] [Abstract][Full Text] [Related]
49. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
50. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [TBL] [Abstract][Full Text] [Related]
51. [The relationship of the larval behavioral traits of the malarial mosquito Anopheles messeae (Diptera: Culicidae) to its sensitivity to the entomopathogenic bacterium Bacillus thuringiensis subspecies israelensis]. Burlak VA Parazitologiia; 1998; 32(1):11-20. PubMed ID: 9612818 [TBL] [Abstract][Full Text] [Related]
52. [Specificity and active principle of Bacillus thuringiensis var. israelensis]. Larget I; de Barjac H Bull Soc Pathol Exot Filiales; 1981; 74(2):216-27. PubMed ID: 7249246 [TBL] [Abstract][Full Text] [Related]
53. Toxicity of Bacillus thuringiensis and B. sphaericus to laboratory populations of Drosophila melanogaster (Diptera: Drosophilidae). Khyami-Horani H J Basic Microbiol; 2002; 42(2):105-10. PubMed ID: 11981874 [TBL] [Abstract][Full Text] [Related]
54. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B; Lijek RS; Griffiths RI; Bonsall MB J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [TBL] [Abstract][Full Text] [Related]
55. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330 [TBL] [Abstract][Full Text] [Related]
56. [Comparative chromosomal analysis of populations of phytophilous chironomidae Glyptotendipes glaucus (Mg.) from Chernobyl-affected territory]. Belianina SI Genetika; 2014 Sep; 50(9):1025-32. PubMed ID: 25735132 [TBL] [Abstract][Full Text] [Related]
57. Control of chironomid larvae (Diptera: Chironomidae) in establishing rice crops using starch-based chlorpyrifos pellets. Stevens MM; Warren GN J Am Mosq Control Assoc; 1995 Jun; 11(2 Pt 1):206-10. PubMed ID: 7595447 [TBL] [Abstract][Full Text] [Related]
58. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Kotze AC; O'Grady J; Gough JM; Pearson R; Bagnall NH; Kemp DH; Akhurst RJ Int J Parasitol; 2005 Aug; 35(9):1013-22. PubMed ID: 15964574 [TBL] [Abstract][Full Text] [Related]
59. Chironomid fauna (Diptera, Chironomidae) in a filtration plant in Japan. Hirabayashi K; Matsuzawa M; Yamamoto M; Nakamoto N J Am Mosq Control Assoc; 2004 Mar; 20(1):74-82. PubMed ID: 15088707 [TBL] [Abstract][Full Text] [Related]
60. Distribution and control of Chironomus riparius (Diptera: Chironomidae) in a polluted creek. Cilek JE; Knapp FW J Am Mosq Control Assoc; 1992 Jun; 8(2):181-3. PubMed ID: 1431860 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]