BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17939646)

  • 21. Effect of high pH column regeneration on the separation performances in reversed phase chromatography of peptides.
    Gétaz D; Gencoglu M; Forrer N; Morbidelli M
    J Chromatogr A; 2010 May; 1217(21):3531-7. PubMed ID: 20382392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paradigm Shift: Major Role of Ion-Pairing-Dependent Size Exclusion Effects in Bottom-Up Proteomics Reversed-Phase Peptide Separations.
    Yeung D; Spicer V; Zahedi RP; Krokhin OV
    Anal Chem; 2024 Jun; 96(23):9721-9728. PubMed ID: 38807522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of hydrophilic interaction chromatography retention coefficients for predicting peptide elution with TFA and methanesulfonic acid ion-pairing reagents.
    Wujcik CE; Tweed J; Kadar EP
    J Sep Sci; 2010 Mar; 33(6-7):826-33. PubMed ID: 20087867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benzoyl derivatization as a method to improve retention of hydrophilic peptides in tryptic peptide mapping.
    Julka S; Regnier FE
    Anal Chem; 2004 Oct; 76(19):5799-806. PubMed ID: 15456300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retention behavior of peptides in hydrophilic-interaction chromatography.
    Gilar M; Jaworski A
    J Chromatogr A; 2011 Dec; 1218(49):8890-6. PubMed ID: 21530976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative evaluation of high-performance liquid chromatography stationary phases used for the separation of peptides in terms of quantitative structure-retention relationships.
    Michel M; Baczek T; Studzińska S; Bodzioch K; Jonsson T; Kaliszan R; Buszewski B
    J Chromatogr A; 2007 Dec; 1175(1):49-54. PubMed ID: 17980378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification of naturally occurring peptides by reversed-phase HPLC.
    Conlon JM
    Nat Protoc; 2007; 2(1):191-7. PubMed ID: 17401353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [High performance liquid chromatography of peptide bioregulators, their fragments and derivatives. III. Regularities of sorption, prediction of retention and analysis of peptides by a reversed phase HPLC method].
    Grigor'eva VD; Shatts VD
    Bioorg Khim; 1989 Aug; 15(8):1013-8. PubMed ID: 2590246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of mobile phase composition on the retention of selected alkaloids in reversed-phase liquid chromatography with chaotropic salts.
    Flieger J
    J Chromatogr A; 2007 Dec; 1175(2):207-16. PubMed ID: 17980887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of modern reversed-phase peptide retention prediction algorithms to the Houghten and DeGraw dataset: peptide helicity and its effect on prediction accuracy.
    Reimer J; Spicer V; Krokhin OV
    J Chromatogr A; 2012 Sep; 1256():160-8. PubMed ID: 22897865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides.
    Bodzioch K; Baczek T; Kaliszan R; Vander Heyden Y
    J Pharm Biomed Anal; 2009 Nov; 50(4):563-9. PubMed ID: 18929455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrophobicity indices for amino acid residues as determined by high-performance liquid chromatography.
    Cowan R; Whittaker RG
    Pept Res; 1990; 3(2):75-80. PubMed ID: 2134053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peptide separation selectivity in proteomics LC-MS experiments: Comparison of formic and mixed formic/heptafluorobutyric acids ion-pairing modifiers.
    Gussakovsky D; Anderson G; Spicer V; Krokhin OV
    J Sep Sci; 2020 Oct; 43(20):3830-3839. PubMed ID: 32818315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pH on retention in linear organic modifier gradient RP HPLC.
    Wiczling P; Kaliszan R
    Anal Chem; 2008 Oct; 80(20):7855-61. PubMed ID: 18781775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D HPLC-MS with Reversed-Phase Separation Functionality in All Three Dimensions for Large-Scale Bottom-Up Proteomics and Peptide Retention Data Collection.
    Spicer V; Ezzati P; Neustaeter H; Beavis RC; Wilkins JA; Krokhin OV
    Anal Chem; 2016 Mar; 88(5):2847-55. PubMed ID: 26849966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic comparison of different functionality columns for a classical pharmaceutical problem.
    Marín A; Barbas C
    J Pharm Biomed Anal; 2006 Feb; 40(2):262-70. PubMed ID: 16146679
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS.
    Krokhin OV; Craig R; Spicer V; Ens W; Standing KG; Beavis RC; Wilkins JA
    Mol Cell Proteomics; 2004 Sep; 3(9):908-19. PubMed ID: 15238601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Separation of Amadori peptides from their unmodified analogs by ion-pairing RP-HPLC with heptafluorobutyric acid as ion-pair reagent.
    Frolov A; Hoffmann R
    Anal Bioanal Chem; 2008 Nov; 392(6):1209-14. PubMed ID: 18813915
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the pore size of reversed phase materials on peptide purification processes.
    Gétaz D; Dogan N; Forrer N; Morbidelli M
    J Chromatogr A; 2011 May; 1218(20):2912-22. PubMed ID: 21450297
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of peptides from myoglobin enzymatic digests by RPLC. Influence of the mobile-phase composition and the pressure on the retention and separation.
    Marchetti N; Guiochon G
    Anal Chem; 2005 Jun; 77(11):3425-30. PubMed ID: 15924371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.