These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17939646)

  • 41. Selectivity differences between alkyl and polar-modified alkyl phases in reversed phase high performance liquid chromatography.
    Jing LL; Jiang R; Liu P; Wang PA; Shi TY; Sun XL
    J Sep Sci; 2009 Jan; 32(2):212-20. PubMed ID: 19107765
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of protein, peptide, and amino acid retention on C5 hydride-based stationary phases.
    Pesek JJ; Matyska MT; Venkat JP
    J Sep Sci; 2008 Aug; 31(14):2560-6. PubMed ID: 18618464
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Separation of highly charged (+5 to +10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography.
    Mant CT; Byars A; Ankarlo S; Jiang Z; Hodges RS
    J Chromatogr A; 2018 Nov; 1574():60-70. PubMed ID: 30220427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Requirements for prediction of peptide retention time in reversed-phase high-performance liquid chromatography: hydrophilicity/hydrophobicity of side-chains at the N- and C-termini of peptides are dramatically affected by the end-groups and location.
    Tripet B; Cepeniene D; Kovacs JM; Mant CT; Krokhin OV; Hodges RS
    J Chromatogr A; 2007 Feb; 1141(2):212-25. PubMed ID: 17187811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography.
    Shibue M; Mant CT; Hodges RS
    J Chromatogr A; 2005 Jul; 1080(1):68-75. PubMed ID: 16013616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of C18 silica bonded phases selectivity in micellar liquid chromatography.
    Kulikov AU; Galat MN
    J Sep Sci; 2009 May; 32(9):1340-50. PubMed ID: 19399863
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents.
    Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M
    Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Peptide pore accessibility in reversed-phase chromatography.
    Gétaz D; Ströhlein G; Morbidelli M
    J Chromatogr A; 2009 Feb; 1216(6):933-40. PubMed ID: 19111310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    J Proteome Res; 2009 Aug; 8(8):4109-15. PubMed ID: 19492844
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ion-exchange HPLC for peptide purification.
    Andrews PC
    Pept Res; 1988; 1(2):93-9. PubMed ID: 2980785
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ion-pair mediated transport of small model peptides in liquid phase micro extraction under acidic conditions.
    Reubsaet JL; Paulsen JV
    J Sep Sci; 2005 Feb; 28(3):295-300. PubMed ID: 15776934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Study of the selectivity of reversed-phase columns for the separation of polycarboxylic acids and polyphenol compounds.
    Whelan TJ; Gray MJ; Slonecker PJ; Shalliker RA; Wilson MA
    J Chromatogr A; 2005 Dec; 1097(1-2):148-56. PubMed ID: 16298194
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of a generalized use of the log Sum(k+1)AA descriptor in a QSRR model to predict peptide retention on RPLC systems.
    Bodzioch K; Dejaegher B; Baczek T; Kaliszan R; Vander Heyden Y
    J Sep Sci; 2009 Jun; 32(12):2075-83. PubMed ID: 19479750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click beta-cyclodextrin" stationary phase.
    Guo Z; Jin Y; Liang T; Liu Y; Xu Q; Liang X; Lei A
    J Chromatogr A; 2009 Jan; 1216(2):257-63. PubMed ID: 19070861
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capillary electrophoresis of cationic random coil peptide standards: effect of anionic ion-pairing reagents and comparison with reversed-phase chromatography.
    Popa TV; Mant CT; Hodges RS
    Electrophoresis; 2004 May; 25(9):1219-29. PubMed ID: 15174041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-performance liquid chromatography retention mechanisms and their mathematical descriptions.
    Kazakevich YV
    J Chromatogr A; 2006 Sep; 1126(1-2):232-43. PubMed ID: 16765966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of anionic ion-pairing reagent concentration (1-60 mM) on reversed-phase liquid chromatography elution behaviour of peptides.
    Shibue M; Mant CT; Hodges RS
    J Chromatogr A; 2005 Jul; 1080(1):58-67. PubMed ID: 16013615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Universal retention standard for peptide separations using various modes of high-performance liquid chromatography.
    Klaassen N; Spicer V; Krokhin OV
    J Chromatogr A; 2019 Mar; 1588():163-168. PubMed ID: 30626502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The application of gradient reversed-phase high-performance liquid chromatography to the pK(a) and log k(w) determination of polyprotic analytes.
    Wiczling P; Waszczuk-Jankowska M; Markuszewski MJ; Kaliszan R
    J Chromatogr A; 2008 Dec; 1214(1-2):109-14. PubMed ID: 18992894
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peptide retention time prediction for peptides with post-translational modifications: N-terminal (α-amine) and lysine (ε-amine) acetylation.
    Mizero B; Yeung D; Spicer V; Krokhin OV
    J Chromatogr A; 2021 Nov; 1657():462584. PubMed ID: 34619563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.