BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 17939652)

  • 1. Mapping of activity-specific fragment pathways isolated from random fragment populations reveals the formation of coherent molecular cores.
    Lounkine E; Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(6):2133-9. PubMed ID: 17939652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical database mining through entropy-based molecular similarity assessment of randomly generated structural fragment populations.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(1):59-68. PubMed ID: 17238249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining of randomly generated molecular fragment populations uncovers activity-specific fragment hierarchies.
    Batista J; Bajorath J
    J Chem Inf Model; 2007; 47(4):1405-13. PubMed ID: 17585755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment formal concept analysis accurately classifies compounds with closely related biological activities.
    Krüger F; Lounkine E; Bajorath J
    ChemMedChem; 2009 Jul; 4(7):1174-81. PubMed ID: 19384901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RelACCS-FP: a structural minimalist approach to fingerprint design.
    Hu Y; Lounkine E; Batista J; Bajorath J
    Chem Biol Drug Des; 2008 Nov; 72(5):341-9. PubMed ID: 19012570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core trees and consensus fragment sequences for molecular representation and similarity analysis.
    Lounkine E; Bajorath J
    J Chem Inf Model; 2008 Jun; 48(6):1161-6. PubMed ID: 18491888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topological fragment index for the analysis of molecular substructures and their topological environment in active compounds.
    Lounkine E; Bajorath J
    J Chem Inf Model; 2009 Feb; 49(2):162-8. PubMed ID: 19007294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of molecular similarity from the analysis of randomly generated structural fragment populations.
    Batista J; Godden JW; Bajorath J
    J Chem Inf Model; 2006; 46(5):1937-44. PubMed ID: 16995724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity searching using compound class-specific combinations of substructures found in randomly generated molecular fragment populations.
    Batista J; Bajorath J
    ChemMedChem; 2008 Jan; 3(1):67-73. PubMed ID: 17952883
    [No Abstract]   [Full Text] [Related]  

  • 10. Formal concept analysis for the identification of molecular fragment combinations specific for active and highly potent compounds.
    Lounkine E; Auer J; Bajorath J
    J Med Chem; 2008 Sep; 51(17):5342-8. PubMed ID: 18698757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mining a chemical database for fragment co-occurrence: discovery of "chemical clichés".
    Lameijer EW; Kok JN; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):553-62. PubMed ID: 16562983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gas pressure and gas type on the fragmentation of peptide and oligosaccharide ions generated in an elevated pressure UV/IR-MALDI ion source coupled to an orthogonal time-of-flight mass spectrometer.
    Soltwisch J; Souady J; Berkenkamp S; Dreisewerd K
    Anal Chem; 2009 Apr; 81(8):2921-34. PubMed ID: 19301914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical fragment spaces for de novo design.
    Mauser H; Stahl M
    J Chem Inf Model; 2007; 47(2):318-24. PubMed ID: 17300171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for computer-aided chemical biology. Part 4: selectivity searching for ion channel ligands and mapping of molecular fragments as selectivity markers.
    Ahmed HE; Geppert H; Stumpfe D; Lounkine E; Bajorath J
    Chem Biol Drug Des; 2009 Mar; 73(3):273-82. PubMed ID: 19207462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for substructures in fragment spaces.
    Ehrlich HC; Volkamer A; Rarey M
    J Chem Inf Model; 2012 Dec; 52(12):3181-9. PubMed ID: 23205736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of molecular fragmentation using shaped femtosecond pulses.
    Lozovoy VV; Zhu X; Gunaratne TC; Harris DA; Shane JC; Dantus M
    J Phys Chem A; 2008 May; 112(17):3789-812. PubMed ID: 18433144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of randomly generated activity class characteristic substructures in diverse active and database compounds.
    Batista J; Bajorath J
    Mol Divers; 2008 Feb; 12(1):77-83. PubMed ID: 18506591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Definition and detection of outliers in chemical space.
    Casalegno M; Sello G; Benfenati E
    J Chem Inf Model; 2008 Aug; 48(8):1592-601. PubMed ID: 18652445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for computer-aided chemical biology. Part 5: rationalizing the selectivity of cathepsin inhibitors on the basis of molecular fragments and topological feature distributions.
    Ahmed HE; Bajorath J
    Chem Biol Drug Des; 2009 Aug; 74(2):129-41. PubMed ID: 19549075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices.
    Wawer M; Peltason L; Weskamp N; Teckentrup A; Bajorath J
    J Med Chem; 2008 Oct; 51(19):6075-84. PubMed ID: 18798611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.