These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 17939663)
1. Mutagenesis of morphinone reductase induces multiple reactive configurations and identifies potential ambiguity in kinetic analysis of enzyme tunneling mechanisms. Pudney CR; Hay S; Pang J; Costello C; Leys D; Sutcliffe MJ; Scrutton NS J Am Chem Soc; 2007 Nov; 129(45):13949-56. PubMed ID: 17939663 [TBL] [Abstract][Full Text] [Related]
2. Parallel pathways and free-energy landscapes for enzymatic hydride transfer probed by hydrostatic pressure. Pudney CR; McGrory T; Lafite P; Pang J; Hay S; Leys D; Sutcliffe MJ; Scrutton NS Chembiochem; 2009 May; 10(8):1379-84. PubMed ID: 19405065 [TBL] [Abstract][Full Text] [Related]
3. Deep tunneling dominates the biologically important hydride transfer reaction from NADH to FMN in morphinone reductase. Pang J; Hay S; Scrutton NS; Sutcliffe MJ J Am Chem Soc; 2008 Jun; 130(22):7092-7. PubMed ID: 18470990 [TBL] [Abstract][Full Text] [Related]
4. H-tunneling in the multiple H-transfers of the catalytic cycle of morphinone reductase and in the reductive half-reaction of the homologous pentaerythritol tetranitrate reductase. Basran J; Harris RJ; Sutcliffe MJ; Scrutton NS J Biol Chem; 2003 Nov; 278(45):43973-82. PubMed ID: 12941965 [TBL] [Abstract][Full Text] [Related]
5. Effects of environment on flavin reactivity in morphinone reductase: analysis of enzymes displaying differential charge near the N-1 atom and C-2 carbonyl region of the active-site flavin. Craig DH; Barna T; Moody PC; Bruce NC; Chapman SK; Munro AW; Scrutton NS Biochem J; 2001 Oct; 359(Pt 2):315-23. PubMed ID: 11583577 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797 [TBL] [Abstract][Full Text] [Related]
7. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Hay S; Sutcliffe MJ; Scrutton NS Proc Natl Acad Sci U S A; 2007 Jan; 104(2):507-12. PubMed ID: 17202258 [TBL] [Abstract][Full Text] [Related]
8. Selectivity through discriminatory induced fit enables switching of NAD(P)H coenzyme specificity in Old Yellow Enzyme ene-reductases. Iorgu AI; Hedison TM; Hay S; Scrutton NS FEBS J; 2019 Aug; 286(16):3117-3128. PubMed ID: 31033202 [TBL] [Abstract][Full Text] [Related]
9. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis. Craig DH; Moody PC; Bruce NC; Scrutton NS Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575 [TBL] [Abstract][Full Text] [Related]
10. Alpha-secondary isotope effects as probes of "tunneling-ready" configurations in enzymatic H-tunneling: insight from environmentally coupled tunneling models. Pudney CR; Hay S; Sutcliffe MJ; Scrutton NS J Am Chem Soc; 2006 Nov; 128(43):14053-8. PubMed ID: 17061887 [TBL] [Abstract][Full Text] [Related]
11. Reaction of morphinone reductase with 2-cyclohexen-1-one and 1-nitrocyclohexene: proton donation, ligand binding, and the role of residues Histidine 186 and Asparagine 189. Messiha HL; Munro AW; Bruce NC; Barsukov I; Scrutton NS J Biol Chem; 2005 Mar; 280(11):10695-709. PubMed ID: 15632179 [TBL] [Abstract][Full Text] [Related]
12. Incorporation of hydrostatic pressure into models of hydrogen tunneling highlights a role for pressure-modulated promoting vibrations. Hay S; Scrutton NS Biochemistry; 2008 Sep; 47(37):9880-7. PubMed ID: 18717597 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of bacterial morphinone reductase and properties of the C191A mutant enzyme. Barna T; Messiha HL; Petosa C; Bruce NC; Scrutton NS; Moody PC J Biol Chem; 2002 Aug; 277(34):30976-83. PubMed ID: 12048188 [TBL] [Abstract][Full Text] [Related]
14. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives. Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482 [TBL] [Abstract][Full Text] [Related]
15. A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency. Sánchez-Azqueta A; Herguedas B; Hurtado-Guerrero R; Hervás M; Navarro JA; Martínez-Júlvez M; Medina M Biochim Biophys Acta; 2014 Feb; 1837(2):251-63. PubMed ID: 24200908 [TBL] [Abstract][Full Text] [Related]
16. Reaction of phthalate dioxygenase reductase with NADH and NAD: kinetic and spectral characterization of intermediates. Gassner G; Wang L; Batie C; Ballou DP Biochemistry; 1994 Oct; 33(40):12184-93. PubMed ID: 7522555 [TBL] [Abstract][Full Text] [Related]
17. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
18. Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase. Pudney CR; Hay S; Scrutton NS FEBS J; 2009 Sep; 276(17):4780-9. PubMed ID: 19664062 [TBL] [Abstract][Full Text] [Related]
19. Solvent as a probe of active site motion and chemistry during the hydrogen tunnelling reaction in morphinone reductase. Hay S; Pudney CR; Sutcliffe MJ; Scrutton NS Chemphyschem; 2008 Sep; 9(13):1875-81. PubMed ID: 18668493 [TBL] [Abstract][Full Text] [Related]
20. Temperature-Independent Kinetic Isotope Effects as Evidence for a Marcus-like Model of Hydride Tunneling in Phosphite Dehydrogenase. Howe GW; van der Donk WA Biochemistry; 2019 Oct; 58(41):4260-4268. PubMed ID: 31535852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]