BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 17939689)

  • 1. Entropy-driven softening of fluid lipid bilayers by alamethicin.
    Pabst G; Danner S; Podgornik R; Katsaras J
    Langmuir; 2007 Nov; 23(23):11705-11. PubMed ID: 17939689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antibacterial peptide ceratotoxin A displays alamethicin-like behavior in lipid bilayers.
    Saint N; Marri L; Marchini D; Molle G
    Peptides; 2003 Nov; 24(11):1779-84. PubMed ID: 15019210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of alamethicin insertion into lipid bilayers.
    He K; Ludtke SJ; Heller WT; Huang HW
    Biophys J; 1996 Nov; 71(5):2669-79. PubMed ID: 8913604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations.
    Wu Y; He K; Ludtke SJ; Huang HW
    Biophys J; 1995 Jun; 68(6):2361-9. PubMed ID: 7647240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide-lipid interactions and mechanisms of antimicrobial peptides.
    Huang HW
    Novartis Found Symp; 1999; 225():188-200; discussion 200-6. PubMed ID: 10472056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of the distribution of hexane in a lipid bilayer: spatially resolved free energy, entropy, and enthalpy profiles.
    MacCallum JL; Tieleman DP
    J Am Chem Soc; 2006 Jan; 128(1):125-30. PubMed ID: 16390139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis.
    Qian S; Wang W; Yang L; Huang HW
    Biophys J; 2008 May; 94(9):3512-22. PubMed ID: 18199659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane thinning effect of the beta-sheet antimicrobial protegrin.
    Heller WT; Waring AJ; Lehrer RI; Harroun TA; Weiss TM; Yang L; Huang HW
    Biochemistry; 2000 Jan; 39(1):139-45. PubMed ID: 10625488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of a peptide antibiotic alamethicin at the air-water interface and its influence on the viscoelasticity of phospholipid monolayers.
    Krishnaswamy R; Rathee V; Sood AK
    Langmuir; 2008 Oct; 24(20):11770-7. PubMed ID: 18823083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sodium dodecyl sulfate at different hydration conditions on dioleoyl phosphatidylcholine bilayers studied by grazing incidence X-ray diffraction.
    Pereira-Lachataignerais J; Pons R; Amenitsch H; Rappolt M; Sartori B; López O
    Langmuir; 2006 Jun; 22(12):5256-60. PubMed ID: 16732649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alamethicin influence on the membrane bending elasticity.
    Vitkova V; Méléard P; Pott T; Bivas I
    Eur Biophys J; 2006 Feb; 35(3):281-6. PubMed ID: 16211403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of changing the size of lipid headgroup on peptide insertion into membranes.
    Heller WT; He K; Ludtke SJ; Harroun TA; Huang HW
    Biophys J; 1997 Jul; 73(1):239-44. PubMed ID: 9199788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of magainin and alamethicin in model membranes studied by x-ray reflectivity.
    Li C; Salditt T
    Biophys J; 2006 Nov; 91(9):3285-300. PubMed ID: 16920839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of newcastle disease virus glycoproteins on the structural and thermal behaviour of 1,2-dihexadecyl-sn-glycero-3-phosphatidylcholine lipid membranes under osmotic stress conditions.
    Pravchanska R; Borissova P; Doumanova L; Neitchev V; Laggner P
    Colloids Surf B Biointerfaces; 2006 Nov; 53(1):72-7. PubMed ID: 16971095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes.
    Bechinger B; Skladnev DA; Ogrel A; Li X; Rogozhkina EV; Ovchinnikova TV; O'Neil JD; Raap J
    Biochemistry; 2001 Aug; 40(31):9428-37. PubMed ID: 11478913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies.
    Dave PC; Billington E; Pan YL; Straus SK
    Biophys J; 2005 Oct; 89(4):2434-42. PubMed ID: 16055546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of antibiotic amphotericin B on structural and dynamic properties of lipid membranes formed with egg yolk phosphatidylcholine.
    Hereć M; Islamov A; Kuklin A; Gagoś M; Gruszecki WI
    Chem Phys Lipids; 2007 Jun; 147(2):78-86. PubMed ID: 17481599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.