BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17939744)

  • 1. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2010 Mar; 82(6):2434-40. PubMed ID: 20184349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass transport at microband electrodes: transient, quasi-steady-state, and convective regimes.
    Amatore C; Pebay C; Sella C; Thouin L
    Chemphyschem; 2012 Apr; 13(6):1562-8. PubMed ID: 22411777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic electrochemical responses of polymer microchannel-microelectrode chips.
    Ueno K; Kim HB; Kitamura N
    Anal Chem; 2003 May; 75(9):2086-91. PubMed ID: 12720345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.
    Pebay C; Sella C; Thouin L; Amatore C
    Anal Chem; 2013 Dec; 85(24):12062-9. PubMed ID: 24283775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Channel microband chronoamperometry: from transient to steady-state regimes.
    Amatore C; Lemmer C; Sella C; Thouin L
    Anal Chem; 2011 Jun; 83(11):4170-7. PubMed ID: 21495729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General concept of high-performance amperometric detector for microfluidic (bio)analytical chips.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2008 Jul; 80(13):4976-85. PubMed ID: 18470995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference between ultramicroelectrodes and microelectrodes: influence of natural convection.
    Amatore C; Pebay C; Thouin L; Wang A; Warkocz JS
    Anal Chem; 2010 Aug; 82(16):6933-9. PubMed ID: 20704383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.
    Amatore C; Oleinick A; Klymenko OV; Svir I
    Chemphyschem; 2005 Aug; 6(8):1581-9. PubMed ID: 16082662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes.
    Ordeig O; Godino N; del Campo J; Muñoz FX; Nikolajeff F; Nyholm L
    Anal Chem; 2008 May; 80(10):3622-32. PubMed ID: 18386910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent diffusion-migration at cylindrical and spherical microelectrodes: steady- and quasi-steady-state analytical solution can be used under transient conditions.
    Klymenko OV; Amatore C; Svir I
    Anal Chem; 2007 Aug; 79(16):6341-7. PubMed ID: 17637041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ion-exchange membrane under natural convection.
    Larchet C; Nouri S; Auclair B; Dammak L; Nikonenko V
    Adv Colloid Interface Sci; 2008 Jun; 139(1-2):45-61. PubMed ID: 18308286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry.
    Illa X; Ordeig O; Snakenborg D; Romano-Rodríguez A; Compton RG; Kutter JP
    Lab Chip; 2010 May; 10(10):1254-61. PubMed ID: 20445877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microband lactate biosensor fabricated using a water-based screen-printed carbon ink.
    Rawson FJ; Purcell WM; Xu J; Pemberton RM; Fielden PR; Biddle N; Hart JP
    Talanta; 2009 Jan; 77(3):1149-54. PubMed ID: 19064104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic electrochemistry: design for a high-speed rotating disk electrode.
    Banks CE; Simm AO; Bowler R; Dawes K; Compton RG
    Anal Chem; 2005 Mar; 77(6):1928-30. PubMed ID: 15762607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric field gradient focusing in microchannels with embedded bipolar electrode.
    Hlushkou D; Perdue RK; Dhopeshwarkar R; Crooks RM; Tallarek U
    Lab Chip; 2009 Jul; 9(13):1903-13. PubMed ID: 19532966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout.
    Amatore C; Klymenko OV; Oleinick AI; Svir I
    Anal Chem; 2009 Sep; 81(18):7667-76. PubMed ID: 19697937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dispersion on the diffusion zone in two-phase laminar flows in microchannels.
    Chakraborty D; Bose N; Sasmal S; Dasgupta S; Maiti TK; Chakraborty S; DasGupta S
    Anal Chim Acta; 2012 Jan; 710():88-93. PubMed ID: 22123116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ and on-line monitoring of hydrodynamic flow profiles in microfluidic channels based on microelectrochemistry: optimization of channel geometrical parameters for best performance of flow profile reconstruction.
    Amatore C; Klymenko OV; Oleinick A; Svir I
    Chemphyschem; 2007 Aug; 8(12):1870-4. PubMed ID: 17663494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.