These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 17939744)

  • 21. Microfluidic biofuel cells: the influence of electrode diffusion layer on performance.
    Lim KG; Palmore GT
    Biosens Bioelectron; 2007 Jan; 22(6):941-7. PubMed ID: 16753293
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transient convection, diffusion, and adsorption in surface-based biosensors.
    Hansen R; Bruus H; Callisen TH; Hassager O
    Langmuir; 2012 May; 28(19):7557-63. PubMed ID: 22509887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltammetric determination of the geometrical parameters of inlaid microdisks with shields of thickness comparable to the electrode radius.
    Ciani I; Daniele S
    Anal Chem; 2004 Nov; 76(22):6575-81. PubMed ID: 15538779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes.
    Chang ST; Beaumont E; Petsev DN; Velev OD
    Lab Chip; 2008 Jan; 8(1):117-24. PubMed ID: 18094769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of the insulating shield thickness on the steady-state diffusion-limiting current of sphere cap microelectrodes.
    Daniele S; Ciani I; Battistel D
    Anal Chem; 2008 Jan; 80(1):253-9. PubMed ID: 18052341
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions].
    Werner H; Slezak A
    Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical detection in polymer microchannels.
    Rossier JS; Roberts MA; Ferrigno R; Girault HH
    Anal Chem; 1999 Oct; 71(19):4294-9. PubMed ID: 21662857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach.
    Svegl IG; Bele M; Ogorevc B
    Anal Chim Acta; 2008 Nov; 628(2):173-80. PubMed ID: 18929005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Electrochemical Flow Sensor Based on Sensing the Convective-Diffusive Ionic Concentration Layer.
    Park S; Abu-Rjal R; Rosentsvit L; Yossifon G
    ACS Sens; 2019 Jul; 4(7):1806-1815. PubMed ID: 31204472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly selective amperometric glucose microdevice derived from diffusion layer gap electrode.
    Jia WZ; Hu YL; Song YY; Wang K; Xia XH
    Biosens Bioelectron; 2008 Jan; 23(6):892-8. PubMed ID: 18029169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders.
    Hsu JP; Ting CC; Lee DJ; Tseng S; Chen CJ; Su A
    J Colloid Interface Sci; 2007 Mar; 307(1):265-71. PubMed ID: 17187815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attributes of direct current aperiodic and alternating current harmonic components derived from large amplitude Fourier transformed voltammetry under microfluidic control in a channel electrode.
    Matthews SM; Shiddiky MJ; Yunus K; Elton DM; Duffy NW; Gu Y; Fisher AC; Bond AM
    Anal Chem; 2012 Aug; 84(15):6686-92. PubMed ID: 22789156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drop mixing in a microchannel for lab-on-a-chip platforms.
    Rhee M; Burns MA
    Langmuir; 2008 Jan; 24(2):590-601. PubMed ID: 18069861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical Generation of Steady-State Linear Concentration Gradients within Microfluidic Channels Perpendicular to the Flow Field.
    Perrodin P; Sella C; Thouin L
    Anal Chem; 2020 Jun; 92(11):7699-7707. PubMed ID: 32352761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of electroosmotic flows in electron-conducting microchannels by coupled quasi-reversible faradaic and adsorption-mediated depolarization.
    Qian S; Duval JF
    J Colloid Interface Sci; 2006 Aug; 300(1):413-28. PubMed ID: 16725151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.