These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1794037)

  • 21. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to grow a gut: ontogeny of the endoderm in the sea urchin embryo.
    Wessel GM; Wikramanayake A
    Bioessays; 1999 Jun; 21(6):459-71. PubMed ID: 10402953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in glycoconjugate expression during early chick embryo development: a lectin-binding study.
    Griffith CM; Sanders EJ
    Anat Rec; 1991 Oct; 231(2):238-50. PubMed ID: 1746724
    [TBL] [Abstract][Full Text] [Related]  

  • 26. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The betaL integrin subunit is necessary for gastrulation in sea urchin embryos.
    Marsden M; Burke RD
    Dev Biol; 1998 Nov; 203(1):134-48. PubMed ID: 9806779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton.
    Duloquin L; Lhomond G; Gache C
    Development; 2007 Jun; 134(12):2293-302. PubMed ID: 17507391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exogenous hyalin and sea urchin gastrulation. Part IV: a direct adhesion assay - progress in identifying hyalin's active sites.
    Ghazarian H; Coyle-Thompson C; Dalrymple W; Hutchins-Carroll V; Metzenberg S; Razinia Z; Carroll EJ; Oppenheimer SB
    Zygote; 2010 Feb; 18(1):17-26. PubMed ID: 19500445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of cell adhesion molecule E-cadherin in Xenopus embryos begins at gastrulation and predominates in the ectoderm.
    Choi YS; Gumbiner B
    J Cell Biol; 1989 Jun; 108(6):2449-58. PubMed ID: 2472408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth factors and early mesoderm morphogenesis: insights from the sea urchin embryo.
    Adomako-Ankomah A; Ettensohn CA
    Genesis; 2014 Mar; 52(3):158-72. PubMed ID: 24515750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exogenous hyalin and sea urchin gastrulation. Part III: biological activity of hyalin isolated from Lytechinus pictus embryos.
    Contreras A; Vitale J; Hutchins-Carroll V; Carroll EJ; Oppenheimer SB
    Zygote; 2008 Nov; 16(4):355-61. PubMed ID: 18925979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
    Gustafson T; Wolpert L
    Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deployment of extracellular matrix proteins in sea urchin embryogenesis.
    Alliegro MC; Black SD; McClay DR
    Microsc Res Tech; 1992 Jun; 22(1):2-10. PubMed ID: 1377519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A putative role for carbohydrates in sea urchin gastrulation.
    Latham VH; Tully MJ; Oppenheimer SB
    Acta Histochem; 1999 Jul; 101(3):293-303. PubMed ID: 10443292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracellular matrix triggers a directed cell migratory response in sea urchin primary mesenchyme cells.
    Solursh M; Lane MC
    Dev Biol; 1988 Nov; 130(1):397-401. PubMed ID: 3181638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo.
    Katow H
    Exp Cell Res; 1995 Jun; 218(2):469-78. PubMed ID: 7796882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.