These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17940601)

  • 1. Proprioceptive movement illusions due to prolonged stimulation: reversals and aftereffects.
    Seizova-Cajic T; Smith JL; Taylor JL; Gandevia SC
    PLoS One; 2007 Oct; 2(10):e1037. PubMed ID: 17940601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of slow, small movement on the vibration-evoked kinesthetic illusion.
    Cordo PJ; Gurfinkel VS; Brumagne S; Flores-Vieira C
    Exp Brain Res; 2005 Dec; 167(3):324-34. PubMed ID: 16132974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The preload force affects the perception threshold of muscle vibration-induced movement illusions.
    Ferrari F; Clemente F; Cipriani C
    Exp Brain Res; 2019 Jan; 237(1):111-120. PubMed ID: 30341466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conflict with vision diminishes proprioceptive adaptation to muscle vibration.
    Seizova-Cajic T; Azzi R
    Exp Brain Res; 2011 Jun; 211(2):169-75. PubMed ID: 21526338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relations between the directions of vibration-induced kinesthetic illusions and the pattern of activation of antagonist muscles.
    Calvin-Figuière S; Romaiguère P; Roll JP
    Brain Res; 2000 Oct; 881(2):128-38. PubMed ID: 11036150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration.
    Kito T; Hashimoto T; Yoneda T; Katamoto S; Naito E
    Brain Res; 2006 Oct; 1114(1):75-84. PubMed ID: 16920087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensorimotor and perceptual function of muscle proprioception in microgravity.
    Roll JP; Popov K; Gurfinkel V; Lipshits M; André-Deshays C; Gilhodes JC; Quoniam C
    J Vestib Res; 1993; 3(3):259-73. PubMed ID: 8275261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography.
    Roll JP; Vedel JP
    Exp Brain Res; 1982; 47(2):177-90. PubMed ID: 6214420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee.
    Collins DF; Refshauge KM; Todd G; Gandevia SC
    J Neurophysiol; 2005 Sep; 94(3):1699-706. PubMed ID: 15917323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proprioceptive consequences of tendon vibration during movement.
    Cordo P; Gurfinkel VS; Bevan L; Kerr GK
    J Neurophysiol; 1995 Oct; 74(4):1675-88. PubMed ID: 8989404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disentangling the percepts of illusory movement and sensory stimulation during tendon vibration in the EEG.
    Schneider C; Marquis R; Jöhr J; Lopes da Silva M; Ryvlin P; Serino A; De Lucia M; Diserens K
    Neuroimage; 2021 Nov; 241():118431. PubMed ID: 34329723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Illusion of arm movement evoked by tendon vibration in patients with spinal cord injury.
    Fusco G; Tidoni E; Barone N; Pilati C; Aglioti SM
    Restor Neurol Neurosci; 2016 Sep; 34(5):815-26. PubMed ID: 27567757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study.
    Radovanovic S; Korotkov A; Ljubisavljevic M; Lyskov E; Thunberg J; Kataeva G; Danko S; Roudas M; Pakhomov S; Medvedev S; Johansson H
    Exp Brain Res; 2002 Apr; 143(3):276-85. PubMed ID: 11889505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach of inducing proprioceptive illusion by transcutaneous electrical stimulation.
    Rangwani R; Park H
    J Neuroeng Rehabil; 2021 May; 18(1):73. PubMed ID: 33941209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A visual distracter task during adaptation reduces the proprioceptive movement aftereffect.
    Seizova-Cajic T; Azzi R
    Exp Brain Res; 2010 May; 203(1):213-9. PubMed ID: 20221589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociating body representations in healthy individuals: differential effects of a kinaesthetic illusion on perception and action.
    Kammers MP; van der Ham IJ; Dijkerman HC
    Neuropsychologia; 2006; 44(12):2430-6. PubMed ID: 16750227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ia afferent feedback of a given movement evokes the illusion of the same movement when returned to the subject via muscle tendon vibration.
    Albert F; Bergenheim M; Ribot-Ciscar E; Roll JP
    Exp Brain Res; 2006 Jun; 172(2):163-74. PubMed ID: 16421730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prior experience and current goals affect muscle-spindle and tactile integration.
    Rabin E; Gordon AM
    Exp Brain Res; 2006 Mar; 169(3):407-16. PubMed ID: 16333618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensorimotor adaptation in response to proprioceptive bias.
    Bernier PM; Chua R; Inglis JT; Franks IM
    Exp Brain Res; 2007 Feb; 177(2):147-56. PubMed ID: 16957884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Illusory motion reversals from unambiguous motion with visual, proprioceptive, and tactile stimuli.
    Holcombe AO; Seizova-Cajic T
    Vision Res; 2008 Aug; 48(17):1743-57. PubMed ID: 18617216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.