BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 17940790)

  • 1. Isometric force production during changed-Gz episodes of parabolic flight.
    Mierau A; Girgenrath M; Bock O
    Eur J Appl Physiol; 2008 Feb; 102(3):313-8. PubMed ID: 17940790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceleration effects on manual performance with isometric and displacement joysticks.
    Guardiera S; Bock O; Pongratz H; Krause W
    Aviat Space Environ Med; 2007 Oct; 78(10):990-4. PubMed ID: 17955950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practice ameliorates deficits of isometric force production in +3 Gz.
    Göbel S; Bock O; Pongratz H; Krause W
    Aviat Space Environ Med; 2006 Jun; 77(6):586-91. PubMed ID: 16780235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isometric force production in experienced fighter pilots during +3 Gz centrifuge acceleration.
    Guardiera S; Bock O; Pongratz H; Krause W
    Aviat Space Environ Med; 2007 Nov; 78(11):1072-4. PubMed ID: 18018442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isometric force production in high Gz: mechanical effects, proprioception, and central motor commands.
    Girgenrath M; Göbel S; Bock O; Pongratz H
    Aviat Space Environ Med; 2005 Apr; 76(4):339-43. PubMed ID: 15828632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exaggerated force production in altered Gz-levels during parabolic flight: the role of computational resources allocation.
    Mierau A; Girgenrath M
    Ergonomics; 2010 Feb; 53(2):278-85. PubMed ID: 20099180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of isometric forces during sustained acceleration.
    Sand DP; Girgenrath M; Bock O; Pongratz H
    Aviat Space Environ Med; 2003 Jun; 74(6 Pt 1):633-7. PubMed ID: 12793534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of isometric force in hypergravity.
    Bock O; Cheung BS
    Aviat Space Environ Med; 1998 Jan; 69(1):27-31. PubMed ID: 9451530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of simulated flight path control at +3 Gz in a human centrifuge.
    Guardiera S; Dalecki M; Bock O
    Aviat Space Environ Med; 2010 Apr; 81(4):394-8. PubMed ID: 20377143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space cycle: a human-powered centrifuge that can be used for hypergravity resistance training.
    Yang Y; Kaplan A; Pierre M; Adams G; Cavanagh P; Takahashi C; Kreitenberg A; Hicks J; Keyak J; Caiozzo V
    Aviat Space Environ Med; 2007 Jan; 78(1):2-9. PubMed ID: 17225475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration in other axes affects +Gz tolerance: dynamic centrifuge simulation of agile flight.
    Albery WB
    Aviat Space Environ Med; 2004 Jan; 75(1):1-6. PubMed ID: 14736126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Objective evaluation of changes in left ventricular and atrial volumes during parabolic flight using real-time three-dimensional echocardiography.
    Caiani EG; Sugeng L; Weinert L; Capderou A; Lang RM; Vaïda P
    J Appl Physiol (1985); 2006 Aug; 101(2):460-8. PubMed ID: 16601310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge.
    Dalecki M; Bock O; Guardiera S
    Aviat Space Environ Med; 2010 May; 81(5):484-8. PubMed ID: 20464815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feasibility of real-time 3D echocardiography in weightlessness during parabolic flight.
    Caiani EG; Sugeng L; Weinert L; Husson S; Bailliart O; Capderou A; Lang RM; Vaida P
    J Gravit Physiol; 2004 Jul; 11(2):P235-6. PubMed ID: 16240526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in lower limb volume in humans during parabolic flight.
    Bailliart O; Capderou A; Cholley BP; Kays C; Rivière D; Téchoueyres P; Lachaud JL; Vaïda P
    J Appl Physiol (1985); 1998 Dec; 85(6):2100-5. PubMed ID: 9843531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight.
    Clément G; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving weightless objects. Grip force control during microgravity.
    Hermsdörfer J; Marquardt C; Philipp J; Zierdt A; Nowak D; Glasauer S; Mai N
    Exp Brain Res; 2000 May; 132(1):52-64. PubMed ID: 10836635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibular function in military pilots before and after 10 s at +9 Gz on a centrifuge.
    Jia H; Cui G; Xie S; Tian D; Bi H; Guo S
    Aviat Space Environ Med; 2009 Jan; 80(1):20-3. PubMed ID: 19180854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in left ventricular size during parabolic flights by two-dimensional echocardiography and level set method.
    Corsi C; Saracino G; Lamberti C; Cerutti S; Bailliart O; Cholley B; Capderou A; Vaida P; Caiani EG
    Comput Cardiol; 2002; 29():73-6. PubMed ID: 14703633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Simulated Microgravity and Hypergravity Conditions on Arm Movements in Normogravity.
    Jamšek M; Kunavar T; Blohm G; Nozaki D; Papaxanthis C; White O; Babič J
    Front Neural Circuits; 2021; 15():750176. PubMed ID: 34970122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.