BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 17941134)

  • 1. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the effect of ionic strength of Tris-acetate background electrolyte on electrophoretic mobilities of mono-, di-, and trivalent organic anions by capillary electrophoresis.
    Koval D; Kasicka V; Zusková I
    Electrophoresis; 2005 Sep; 26(17):3221-31. PubMed ID: 16097028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard systems for measurement of pK values and ionic mobilities: 2. Univalent weak bases.
    Slampová A; Krivánková L; Gebauer P; Bocek P
    J Chromatogr A; 2009 Apr; 1216(17):3637-41. PubMed ID: 19168181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dependence of the electrophoretic mobility of small organic ions on ionic strength and complex formation.
    Allison SA; Pei H; Baek S; Brown J; Lee MY; Nguyen V; Twahir UT; Wu H
    Electrophoresis; 2010 Mar; 31(5):920-32. PubMed ID: 20191555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic strength effects on electrophoretic focusing and separations.
    Bahga SS; Bercovici M; Santiago JG
    Electrophoresis; 2010 Mar; 31(5):910-9. PubMed ID: 20191554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of cation binding to the adenosine nucleotides using the variable ionic strength method: validation of the Debye-Hückel-Onsager theory of electrophoresis in the absence of counterion binding.
    Stellwagen E; Stellwagen NC
    Electrophoresis; 2007 Apr; 28(7):1053-62. PubMed ID: 17295422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Peakmaster for computer-aided multivariate optimisation of a CE separation of 17 antipsychotic drugs using minimal experimental data.
    Johns KF; Breadmore MC; Bruno R; Haddad PR
    Electrophoresis; 2009 Mar; 30(5):839-47. PubMed ID: 19260006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of background electrolytes for capillary electrophoresis: II. Computer simulation and comparison with experiments.
    Jaros M; Vceláková K; Zusková I; Gas B
    Electrophoresis; 2002 Aug; 23(16):2667-77. PubMed ID: 12210171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric friction as a mechanism for selectivity alteration in capillary electrophoresis using acetonitrile-water media.
    Roy KI; Lucy CA
    Electrophoresis; 2002 Feb; 23(3):383-92. PubMed ID: 11870737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard systems for measurement of pKs and ionic mobilities. 1. Univalent weak acids.
    Slampová A; Krivánková L; Gebauer P; Bocek P
    J Chromatogr A; 2008 Dec; 1213(1):25-30. PubMed ID: 18799163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of synthetic polypeptide conformations and molecular geometrical parameters by nonaqueous CE.
    Plasson R; Vayaboury W; Giani O; Cottet H
    Electrophoresis; 2007 Oct; 28(20):3617-24. PubMed ID: 17941129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of capillary affinity electrophoresis and density functional theory to the investigation of valinomycin-lithium complex.
    Ehala S; Dybal J; Makrlík E; Kasicka V
    J Chromatogr A; 2009 Apr; 1216(17):3660-5. PubMed ID: 19233367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of electrophoretic mobilities of proteins and peptides with their physicochemical properties.
    Basak SK; Ladisch MR
    Anal Biochem; 1995 Mar; 226(1):51-8. PubMed ID: 7785779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of limiting mobilities and dissociation constants of 21 amino acids by capillary zone electrophoresis at very low pH.
    Zusková I; Novotná A; Vceláková K; Gas B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):129-34. PubMed ID: 16567135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary electrophoresis of anions at high salt concentrations.
    Ding W; Thornton MJ; Fritz JS
    Electrophoresis; 1998 Sep; 19(12):2133-9. PubMed ID: 9761194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic mobilities of large organic ions in nonaqueous solvents: determination by capillary electrophoresis in propylene carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, acetonitrile and methanol.
    Muzikar J; van De Goor T; Gas B; Kenndler E
    Electrophoresis; 2002 Feb; 23(3):375-82. PubMed ID: 11870736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is the general conclusion justified that higher applicable field strength results in shorter analysis time with organic solvents in CE?
    Téllez A; Kenndler E
    Electrophoresis; 2009 Nov; 30(22):3978-85. PubMed ID: 19938180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the electrophoresis of oligolysines.
    Allison SA; Perrin C; Cottet H
    Electrophoresis; 2011 Oct; 32(20):2788-96. PubMed ID: 21953332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of correction factors in mobility shift affinity capillary electrophoresis for weak analyte-ligand interactions.
    Østergaard J; Jensen H; Holm R
    J Sep Sci; 2009 May; 32(10):1712-21. PubMed ID: 19472279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.