BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17941671)

  • 1. Shape memory behavior of novel (L-lactide-glycolide-trimethylene carbonate) terpolymers.
    Zini E; Scandola M; Dobrzynski P; Kasperczyk J; Bero M
    Biomacromolecules; 2007 Nov; 8(11):3661-7. PubMed ID: 17941671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resilient amorphous networks prepared by photo-crosslinking high-molecular-weight D,L-lactide and trimethylene carbonate macromers: mechanical properties and shape-memory behavior.
    Sharifi S; Grijpma DW
    Macromol Biosci; 2012 Oct; 12(10):1423-35. PubMed ID: 22965835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.
    Musiał-Kulik M; Kasperczyk J; Jelonek K; Dobrzyński P; Gebarowska K; Janeczek H; Libera M
    Acta Pol Pharm; 2010; 67(6):664-8. PubMed ID: 21229883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo degradation of copolymers prepared from L-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials.
    Yuan Y; Jin X; Fan Z; Li S; Lu Z
    J Mater Sci Mater Med; 2015 Mar; 26(3):139. PubMed ID: 25716020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapidly degraded terpolymers of dl-lactide, glycolide, and epsilon-caprolactone with increased hydrophilicity by copolymerization with polyethers.
    Sawhney AS; Hubbell JA
    J Biomed Mater Res; 1990 Oct; 24(10):1397-411. PubMed ID: 2283356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradable porous scaffolds from various L-lactide and trimethylene carbonate copolymers obtained by a simple and effective method.
    Tyson T; Finne-Wistrand A; Albertsson AC
    Biomacromolecules; 2009 Jan; 10(1):149-54. PubMed ID: 19063595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiblock copolymers of L-lactide and trimethylene carbonate.
    Pospiech D; Komber H; Jehnichen D; Häussler L; Eckstein K; Scheibner H; Janke A; Kricheldorf HR; Petermann O
    Biomacromolecules; 2005; 6(1):439-46. PubMed ID: 15638550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topology characterization by MALDI-ToF-MS of enzymatically synthesized poly(lactide-co-glycolide).
    Huijser S; Staal BB; Huang J; Duchateau R; Koning CE
    Biomacromolecules; 2006 Sep; 7(9):2465-9. PubMed ID: 16961304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaffolds with shape memory behavior for the treatment of large bone defects.
    Rychter P; Pamula E; Orchel A; Posadowska U; Krok-Borkowicz M; Kaps A; Smigiel-Gac N; Smola A; Kasperczyk J; Prochwicz W; Dobrzynski P
    J Biomed Mater Res A; 2015 Nov; 103(11):3503-15. PubMed ID: 25973734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible, elastic and tear-resistant networks prepared by photo-crosslinking poly(trimethylene carbonate) macromers.
    Schüller-Ravoo S; Feijen J; Grijpma DW
    Acta Biomater; 2012 Oct; 8(10):3576-85. PubMed ID: 22688087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel injectable and in situ curable glycolide/lactide based biodegradable polymer resins and composites.
    Xie D; Park JG; Zhao J; Turner CH
    J Biomater Appl; 2007 Jul; 22(1):33-54. PubMed ID: 16920760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resilient bioresorbable copolymers based on trimethylene carbonate, L-lactide, and 1,5-dioxepan-2-one.
    Andronova N; Albertsson AC
    Biomacromolecules; 2006 May; 7(5):1489-95. PubMed ID: 16677030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanical studies of hydrolytic degradation in isotropic and oriented Maxon B.
    Hill SP; Montes de Oca H; Klein PG; Ward IM; Rose J; Farrar D
    Biomaterials; 2006 Jun; 27(17):3168-77. PubMed ID: 16476477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticizing effect of water on poly(lactide-co-glycolide).
    Blasi P; D'Souza SS; Selmin F; DeLuca PP
    J Control Release; 2005 Nov; 108(1):1-9. PubMed ID: 16098624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(epsilon-caprolactone) polyurethane and its shape-memory property.
    Ping P; Wang W; Chen X; Jing X
    Biomacromolecules; 2005; 6(2):587-92. PubMed ID: 15762617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field.
    Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR
    J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery.
    Nederberg F; Appel E; Tan JP; Kim SH; Fukushima K; Sly J; Miller RD; Waymouth RM; Yang YY; Hedrick JL
    Biomacromolecules; 2009 Jun; 10(6):1460-8. PubMed ID: 19385659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and hydrolytic degradation of poly(hexylene terephthalate-co-lactide) co-polyesters from melting polycondensation.
    Su J; Chen Y; Tan L
    J Biomater Sci Polym Ed; 2009; 20(1):99-114. PubMed ID: 19105903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organocatalytic ring opening polymerization of trimethylene carbonate.
    Nederberg F; Lohmeijer BG; Leibfarth F; Pratt RC; Choi J; Dove AP; Waymouth RM; Hedrick JL
    Biomacromolecules; 2007 Jan; 8(1):153-60. PubMed ID: 17206801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes.
    Darensbourg DJ; Karroonnirun O; Wilson SJ
    Inorg Chem; 2011 Jul; 50(14):6775-87. PubMed ID: 21675736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.