These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
562 related articles for article (PubMed ID: 17941699)
1. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals. Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study. Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343 [TBL] [Abstract][Full Text] [Related]
3. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
4. Metabolic activation of PCBs to quinones: reactivity toward nitrogen and sulfur nucleophiles and influence of superoxide dismutase. Amaro AR; Oakley GG; Bauer U; Spielmann HP; Robertson LW Chem Res Toxicol; 1996; 9(3):623-9. PubMed ID: 8728508 [TBL] [Abstract][Full Text] [Related]
5. Pro-oxidant and antioxidant mechanisms of etoposide in HL-60 cells: role of myeloperoxidase. Kagan VE; Kuzmenko AI; Tyurina YY; Shvedova AA; Matsura T; Yalowich JC Cancer Res; 2001 Nov; 61(21):7777-84. PubMed ID: 11691792 [TBL] [Abstract][Full Text] [Related]
6. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar. Winston GW; Church DF; Cueto R; Pryor WA Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056 [TBL] [Abstract][Full Text] [Related]
7. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants. Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769 [TBL] [Abstract][Full Text] [Related]
8. Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion. Murray AR; Kisin E; Castranova V; Kommineni C; Gunther MR; Shvedova AA Chem Res Toxicol; 2007 Dec; 20(12):1769-77. PubMed ID: 17922553 [TBL] [Abstract][Full Text] [Related]
9. Role of metabolism and oxidation-reduction cycling in the cytotoxicity of antitumor quinoneimines and quinonediimines. Powis G; Hodnett EM; Santone KS; See KL; Melder DC Cancer Res; 1987 May; 47(9):2363-70. PubMed ID: 3032421 [TBL] [Abstract][Full Text] [Related]
10. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Gebicki JM; Nauser T; Domazou A; Steinmann D; Bounds PL; Koppenol WH Amino Acids; 2010 Nov; 39(5):1131-7. PubMed ID: 20532951 [TBL] [Abstract][Full Text] [Related]
11. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system. Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455 [TBL] [Abstract][Full Text] [Related]
12. Ascorbate as a "redox sensor" and protector against irradiation-induced oxidative stress in 32D CL 3 hematopoietic cells and subclones overexpressing human manganese superoxide dismutase. Epperly MW; Osipov AN; Martin I; Kawai KK; Borisenko GG; Tyurina YY; Jefferson M; Bernarding M; Greenberger JS; Kagan VE Int J Radiat Oncol Biol Phys; 2004 Mar; 58(3):851-61. PubMed ID: 14967442 [TBL] [Abstract][Full Text] [Related]
13. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems. Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642 [TBL] [Abstract][Full Text] [Related]
14. NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Zhao SX; Dalvie DK; Kelly JM; Soglia JR; Frederick KS; Smith EB; Obach RS; Kalgutkar AS Chem Res Toxicol; 2007 Nov; 20(11):1649-57. PubMed ID: 17907785 [TBL] [Abstract][Full Text] [Related]
15. Loss of glutathione, ascorbate recycling, and free radical scavenging in human erythrocytes exposed to filtered cigarette smoke. Maranzana A; Mehlhorn RJ Arch Biochem Biophys; 1998 Feb; 350(2):169-82. PubMed ID: 9473290 [TBL] [Abstract][Full Text] [Related]
16. Protective mechanisms against peptide and protein peroxides generated by singlet oxygen. Morgan PE; Dean RT; Davies MJ Free Radic Biol Med; 2004 Feb; 36(4):484-96. PubMed ID: 14975451 [TBL] [Abstract][Full Text] [Related]
17. Prooxidant activity and cytotoxic effects of indole-3-acetic acid derivative radicals. Tafazoli S; O'brien PJ Chem Res Toxicol; 2004 Oct; 17(10):1350-5. PubMed ID: 15487895 [TBL] [Abstract][Full Text] [Related]
18. In vitro free radical metabolism of phenolphthalein by peroxidases. Sipe HJ; Corbett JT; Mason RP Drug Metab Dispos; 1997 Apr; 25(4):468-80. PubMed ID: 9107547 [TBL] [Abstract][Full Text] [Related]
19. In vitro metabolism study of combretastatin A-4 in rat and human liver microsomes. Aprile S; Del Grosso E; Tron GC; Grosa G Drug Metab Dispos; 2007 Dec; 35(12):2252-61. PubMed ID: 17890446 [TBL] [Abstract][Full Text] [Related]
20. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase. OrdoƱez ID; Cadenas E Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]