BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 17942164)

  • 1. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays.
    Gatidou G; Thomaidis NS
    Aquat Toxicol; 2007 Dec; 85(3):184-91. PubMed ID: 17942164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis.
    Koutsaftis A; Aoyama I
    Environ Toxicol; 2006 Aug; 21(4):432-9. PubMed ID: 16841316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach.
    Pesce S; Lissalde S; Lavieille D; Margoum C; Mazzella N; Roubeix V; Montuelle B
    Aquat Toxicol; 2010 Sep; 99(4):492-9. PubMed ID: 20638141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicities of antifouling biocide Irgarol 1051 and its major degraded product to marine primary producers.
    Zhang AQ; Leung KM; Kwok KW; Bao VW; Lam MH
    Mar Pollut Bull; 2008; 57(6-12):575-86. PubMed ID: 18314144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan.
    Harino H; Mori Y; Yamaguchi Y; Shibata K; Senda T
    Arch Environ Contam Toxicol; 2005 Apr; 48(3):303-10. PubMed ID: 15750770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictability of copper, irgarol, and diuron combined effects on sea urchin Paracentrotus lividus.
    Manzo S; Buono S; Cremisini C
    Arch Environ Contam Toxicol; 2008 Jan; 54(1):57-68. PubMed ID: 17805469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes.
    Lambert SJ; Thomas KV; Davy AJ
    Chemosphere; 2006 May; 63(5):734-43. PubMed ID: 16213569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the effects of diuron and its derivatives on Lemna gibba using a fluorescence toxicity index.
    Dewez D; Marchand M; Eullaffroy P; Popovic R
    Environ Toxicol; 2002 Oct; 17(5):493-501. PubMed ID: 12242681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxic effects of irgarol and diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality.
    Manzo S; Buono S; Cremisini C
    Arch Environ Contam Toxicol; 2006 Jul; 51(1):61-8. PubMed ID: 16446998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixture toxicity of the antifouling compound irgarol to the marine phytoplankton species Dunaliella tertiolecta.
    DeLorenzo ME; Serrano L
    J Environ Sci Health B; 2006; 41(8):1349-60. PubMed ID: 17090497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.).
    Chesworth JC; Donkin ME; Brown MT
    Aquat Toxicol; 2004 Feb; 66(3):293-305. PubMed ID: 15129771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diuron metabolites and urothelial cytotoxicity: in vivo, in vitro and molecular approaches.
    Da Rocha MS; Arnold LL; Dodmane PR; Pennington KL; Qiu F; De Camargo JL; Cohen SM
    Toxicology; 2013 Dec; 314(2-3):238-46. PubMed ID: 24172598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay.
    Bengtson Nash SM; Quayle PA; Schreiber U; Müller JF
    Aquat Toxicol; 2005 May; 72(4):315-26. PubMed ID: 15848251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species.
    Zhang AQ; Zhou GJ; Lam MHW; Leung KMY
    Ecotoxicol Environ Saf; 2019 Oct; 182():109455. PubMed ID: 31344592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of copper bioavailability and toxicity in vineyard runoff waters by DPASV and algal bioassay.
    Devez A; Gomez E; Gilbin R; Elbaz-Poulichet F; Persin F; Andrieux P; Casellas C
    Sci Total Environ; 2005 Sep; 348(1-3):82-92. PubMed ID: 16162315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The environmental fate of diuron under a conventional production regime in a sugarcane farm during the plant cane phase.
    Stork PR; Bennett FR; Bell MJ
    Pest Manag Sci; 2008 Sep; 64(9):954-63. PubMed ID: 18470961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
    Zhou JL
    Sci Total Environ; 2008 Nov; 406(1-2):239-46. PubMed ID: 18789489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae.
    Jung SM; Bae JS; Kang SG; Son JS; Jeon JH; Lee HJ; Jeon JY; Sidharthan M; Ryu SH; Shin HW
    Mar Pollut Bull; 2017 Nov; 124(2):811-818. PubMed ID: 27919420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifouling biocides in water and sediments from California marinas.
    Sapozhnikova Y; Wirth E; Schiff K; Fulton M
    Mar Pollut Bull; 2013 Apr; 69(1-2):189-94. PubMed ID: 23453818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.
    Koutsaftis A; Aoyama I
    Sci Total Environ; 2007 Nov; 387(1-3):166-74. PubMed ID: 17765949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.