These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 17942399)
21. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Cao Q; Kim JH; Richter JD Nat Struct Mol Biol; 2006 Dec; 13(12):1128-34. PubMed ID: 17086181 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of degradation of CPEB during Xenopus oocyte maturation. Setoyama D; Yamashita M; Sagata N Proc Natl Acad Sci U S A; 2007 Nov; 104(46):18001-6. PubMed ID: 17986610 [TBL] [Abstract][Full Text] [Related]
23. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. Charlesworth A; Cox LL; MacNicol AM J Biol Chem; 2004 Apr; 279(17):17650-9. PubMed ID: 14752101 [TBL] [Abstract][Full Text] [Related]
24. Measuring CPEB-mediated cytoplasmic polyadenylation-deadenylation in Xenopus laevis oocytes and egg extracts. Kim JH; Richter JD Methods Enzymol; 2008; 448():119-38. PubMed ID: 19111174 [TBL] [Abstract][Full Text] [Related]
26. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Groisman I; Huang YS; Mendez R; Cao Q; Theurkauf W; Richter JD Cell; 2000 Oct; 103(3):435-47. PubMed ID: 11081630 [TBL] [Abstract][Full Text] [Related]
27. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Reverte CG; Ahearn MD; Hake LE Dev Biol; 2001 Mar; 231(2):447-58. PubMed ID: 11237472 [TBL] [Abstract][Full Text] [Related]
28. Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E. Patrick RM; Mayberry LK; Choy G; Woodard LE; Liu JS; White A; Mullen RA; Tanavin TM; Latz CA; Browning KS Plant Physiol; 2014 Apr; 164(4):1820-30. PubMed ID: 24501003 [TBL] [Abstract][Full Text] [Related]
29. Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. Waghray S; Williams C; Coon JJ; Wickens M RNA; 2015 Jul; 21(7):1335-45. PubMed ID: 26015597 [TBL] [Abstract][Full Text] [Related]
30. Pumilio 2 controls translation by competing with eIF4E for 7-methyl guanosine cap recognition. Cao Q; Padmanabhan K; Richter JD RNA; 2010 Jan; 16(1):221-7. PubMed ID: 19933321 [TBL] [Abstract][Full Text] [Related]
31. Role of cdc2 kinase phosphorylation and conserved N-terminal proteolysis motifs in cytoplasmic polyadenylation-element-binding protein (CPEB) complex dissociation and degradation. Thom G; Minshall N; Git A; Argasinska J; Standart N Biochem J; 2003 Feb; 370(Pt 1):91-100. PubMed ID: 12401129 [TBL] [Abstract][Full Text] [Related]
32. The stem-loop binding protein stimulates histone translation at an early step in the initiation pathway. Gorgoni B; Andrews S; Schaller A; Schümperli D; Gray NK; Müller B RNA; 2005 Jul; 11(7):1030-42. PubMed ID: 15987814 [TBL] [Abstract][Full Text] [Related]
33. Two zebrafish eIF4E family members are differentially expressed and functionally divergent. Robalino J; Joshi B; Fahrenkrug SC; Jagus R J Biol Chem; 2004 Mar; 279(11):10532-41. PubMed ID: 14701818 [TBL] [Abstract][Full Text] [Related]
34. Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. Yamamoto TM; Cook JM; Kotter CV; Khat T; Silva KD; Ferreyros M; Holt JW; Knight JD; Charlesworth A Biochim Biophys Acta; 2013 Oct; 1829(10):1034-46. PubMed ID: 23827238 [TBL] [Abstract][Full Text] [Related]
35. Biophysical studies of eIF4E cap-binding protein: recognition of mRNA 5' cap structure and synthetic fragments of eIF4G and 4E-BP1 proteins. Niedzwiecka A; Marcotrigiano J; Stepinski J; Jankowska-Anyszka M; Wyslouch-Cieszynska A; Dadlez M; Gingras AC; Mak P; Darzynkiewicz E; Sonenberg N; Burley SK; Stolarski R J Mol Biol; 2002 Jun; 319(3):615-35. PubMed ID: 12054859 [TBL] [Abstract][Full Text] [Related]
36. CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Hake LE; Richter JD Cell; 1994 Nov; 79(4):617-27. PubMed ID: 7954828 [TBL] [Abstract][Full Text] [Related]
37. Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast. Grüner S; Weber R; Peter D; Chung MY; Igreja C; Valkov E; Izaurralde E Nucleic Acids Res; 2018 Jul; 46(13):6893-6908. PubMed ID: 30053226 [TBL] [Abstract][Full Text] [Related]
38. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. Ptushkina M; von der Haar T; Karim MM; Hughes JM; McCarthy JE EMBO J; 1999 Jul; 18(14):4068-75. PubMed ID: 10406811 [TBL] [Abstract][Full Text] [Related]
39. Cytoplasmic CstF-77 protein belongs to a masking complex with cytoplasmic polyadenylation element-binding protein in Xenopus oocytes. Rouget C; Papin C; Mandart E J Biol Chem; 2006 Sep; 281(39):28687-98. PubMed ID: 16882666 [TBL] [Abstract][Full Text] [Related]
40. Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Radford HE; Meijer HA; de Moor CH Biochim Biophys Acta; 2008 Apr; 1779(4):217-29. PubMed ID: 18316045 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]