These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17942595)

  • 21. The Rib43a protein is associated with forming the specialized protofilament ribbons of flagellar microtubules in Chlamydomonas.
    Norrander JM; deCathelineau AM; Brown JA; Porter ME; Linck RW
    Mol Biol Cell; 2000 Jan; 11(1):201-15. PubMed ID: 10637302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Microtubule plus end-tracking protein EB1 is localized to the flagellar tip and basal bodies in Chlamydomonas reinhardtii.
    Pedersen LB; Geimer S; Sloboda RD; Rosenbaum JL
    Curr Biol; 2003 Nov; 13(22):1969-74. PubMed ID: 14614822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extragenic bypass suppressors of mutations in the essential gene BLD2 promote assembly of basal bodies with abnormal microtubules in Chlamydomonas reinhardtii.
    Preble AM; Giddings TH; Dutcher SK
    Genetics; 2001 Jan; 157(1):163-81. PubMed ID: 11139500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Katanin knockdown supports a role for microtubule severing in release of basal bodies before mitosis in Chlamydomonas.
    Rasi MQ; Parker JD; Feldman JL; Marshall WF; Quarmby LM
    Mol Biol Cell; 2009 Jan; 20(1):379-88. PubMed ID: 19005222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein.
    Walther Z; Vashishtha M; Hall JL
    J Cell Biol; 1994 Jul; 126(1):175-88. PubMed ID: 8027176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retrograde intraflagellar transport mutants identify complex A proteins with multiple genetic interactions in Chlamydomonas reinhardtii.
    Iomini C; Li L; Esparza JM; Dutcher SK
    Genetics; 2009 Nov; 183(3):885-96. PubMed ID: 19720863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control.
    Nguyen RL; Tam LW; Lefebvre PA
    Genetics; 2005 Mar; 169(3):1415-24. PubMed ID: 15489537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility.
    Lechtreck KF; Witman GB
    J Cell Biol; 2007 Feb; 176(4):473-82. PubMed ID: 17296796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of polyglutamylated tubulin in the flagellar apparatus of green flagellates.
    Lechtreck KF; Geimer S
    Cell Motil Cytoskeleton; 2000 Nov; 47(3):219-35. PubMed ID: 11056523
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic and genomic approaches to identify genes involved in flagellar assembly in Chlamydomonas reinhardtii.
    Lin H; Dutcher SK
    Methods Cell Biol; 2015; 127():349-86. PubMed ID: 25837400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ubiquitin conjugation system is involved in the disassembly of cilia and flagella.
    Huang K; Diener DR; Rosenbaum JL
    J Cell Biol; 2009 Aug; 186(4):601-13. PubMed ID: 19704024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella.
    Hou Y; Qin H; Follit JA; Pazour GJ; Rosenbaum JL; Witman GB
    J Cell Biol; 2007 Feb; 176(5):653-65. PubMed ID: 17312020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Total internal reflection fluorescence (TIRF) microscopy of Chlamydomonas flagella.
    Engel BD; Lechtreck KF; Sakai T; Ikebe M; Witman GB; Marshall WF
    Methods Cell Biol; 2009; 93():157-77. PubMed ID: 20409817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division.
    Pfannenschmid F; Wimmer VC; Rios RM; Geimer S; Kröckel U; Leiherer A; Haller K; Nemcová Y; Mages W
    J Cell Sci; 2003 Apr; 116(Pt 8):1449-62. PubMed ID: 12640030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations.
    Asleson CM; Lefebvre PA
    Genetics; 1998 Feb; 148(2):693-702. PubMed ID: 9504917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas.
    Tam LW; Dentler WL; Lefebvre PA
    J Cell Biol; 2003 Nov; 163(3):597-607. PubMed ID: 14610061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas.
    Wang Q; Pan J; Snell WJ
    Cell; 2006 May; 125(3):549-62. PubMed ID: 16678098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella.
    Harris JA; Liu Y; Yang P; Kner P; Lechtreck KF
    Mol Biol Cell; 2016 Jan; 27(2):295-307. PubMed ID: 26631555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elucidation of basal body and centriole functions in Chlamydomonas reinhardtii.
    Dutcher SK
    Traffic; 2003 Jul; 4(7):443-51. PubMed ID: 12795689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of flagellar phosphoproteins from Chlamydomonas reinhardtii.
    Boesger J; Wagner V; Weisheit W; Mittag M
    Eukaryot Cell; 2009 Jul; 8(7):922-32. PubMed ID: 19429781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.