These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 17942725)

  • 21. Role of the lateral prefrontal cortex in visual object-based selective attention.
    Sinnett S; Snyder JJ; Kingstone A
    Exp Brain Res; 2009 Apr; 194(2):191-6. PubMed ID: 19139861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective ablations reveal that orbital and lateral prefrontal cortex play different roles in estimating predicted reward value.
    Simmons JM; Minamimoto T; Murray EA; Richmond BJ
    J Neurosci; 2010 Nov; 30(47):15878-87. PubMed ID: 21106826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition for priority in processing increases prefrontal cortex's involvement in top-down control: an event-related fMRI study of the stroop task.
    Milham MP; Banich MT; Barad V
    Brain Res Cogn Brain Res; 2003 Jul; 17(2):212-22. PubMed ID: 12880892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common regions of dorsal anterior cingulate and prefrontal-parietal cortices provide attentional control of distracters varying in emotionality and visibility.
    Luo Q; Mitchell D; Jones M; Mondillo K; Vythilingam M; Blair RJ
    Neuroimage; 2007 Nov; 38(3):631-9. PubMed ID: 17889565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching.
    Johnston K; Levin HM; Koval MJ; Everling S
    Neuron; 2007 Feb; 53(3):453-62. PubMed ID: 17270740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-range neural coupling through synchronization with attention.
    Gregoriou GG; Gotts SJ; Zhou H; Desimone R
    Prog Brain Res; 2009; 176():35-45. PubMed ID: 19733748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic study of visual extinction. Between- and within-field deficits of attention in hemispatial neglect.
    Vuilleumier PO; Rafal RD
    Brain; 2000 Jun; 123 ( Pt 6)():1263-79. PubMed ID: 10825363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feature-based attention processes in primate prefrontal cortex do not rely on feature similarity.
    Stalter M; Westendorff S; Nieder A
    Cell Rep; 2021 Aug; 36(5):109470. PubMed ID: 34348162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study.
    Lee TG; D'Esposito M
    J Neurosci; 2012 Oct; 32(44):15458-66. PubMed ID: 23115183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Saccades to the seeing visual hemifield in hemidecorticate patients exhibit task-dependent reaction times and hypometria.
    Herter TM; Guitton D
    Exp Brain Res; 2007 Sep; 182(1):11-25. PubMed ID: 17516057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study.
    Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG
    J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrical stimulation of macaque lateral prefrontal cortex modulates oculomotor behavior indicative of a disruption of top-down attention.
    Schwedhelm P; Baldauf D; Treue S
    Sci Rep; 2017 Dec; 7(1):17715. PubMed ID: 29255155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does focused endogenous attention prevent attentional capture in pop-out visual search?
    Seiss E; Kiss M; Eimer M
    Psychophysiology; 2009 Jul; 46(4):703-17. PubMed ID: 19473304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Covert orienting of attention in macaques. II. Contributions of parietal cortex.
    Robinson DL; Bowman EM; Kertzman C
    J Neurophysiol; 1995 Aug; 74(2):698-712. PubMed ID: 7472375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Loss of attentional stimulus selection after extrastriate cortical lesions in macaques.
    De Weerd P; Peralta MR; Desimone R; Ungerleider LG
    Nat Neurosci; 1999 Aug; 2(8):753-8. PubMed ID: 10412066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A gateway system in rostral PFC? Evidence from biasing attention to perceptual information and internal representations.
    Henseler I; Krüger S; Dechent P; Gruber O
    Neuroimage; 2011 Jun; 56(3):1666-76. PubMed ID: 21352923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of the dorsolateral prefrontal cortex of monkeys in visuospatial target selection.
    Iba M; Sawaguchi T
    J Neurophysiol; 2003 Jan; 89(1):587-99. PubMed ID: 12522204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of neurons in inferior temporal cortex during memory-guided visual search.
    Chelazzi L; Duncan J; Miller EK; Desimone R
    J Neurophysiol; 1998 Dec; 80(6):2918-40. PubMed ID: 9862896
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task.
    Sawaguchi T; Yamane I
    J Neurophysiol; 1999 Nov; 82(5):2070-80. PubMed ID: 10561388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.