These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17943196)

  • 61. Single-molecule studies of membrane proteins.
    Müller DJ; Sapra KT; Scheuring S; Kedrov A; Frederix PL; Fotiadis D; Engel A
    Curr Opin Struct Biol; 2006 Aug; 16(4):489-95. PubMed ID: 16797964
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Protein design: on the threshold of functional properties.
    Tuchscherer G; Scheibler L; Dumy P; Mutter M
    Biopolymers; 1998; 47(1):63-73. PubMed ID: 9692327
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nonmechanical protein can have significant mechanical stability.
    Cao Y; Lam C; Wang M; Li H
    Angew Chem Int Ed Engl; 2006 Jan; 45(4):642-5. PubMed ID: 16345105
    [No Abstract]   [Full Text] [Related]  

  • 64. Single-molecule dynamics of mechanical coiled-coil unzipping.
    Bornschlögl T; Rief M
    Langmuir; 2008 Feb; 24(4):1338-42. PubMed ID: 17973511
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Native protein nanolithography that can write, read and erase.
    Tinazli A; Piehler J; Beuttler M; Guckenberger R; Tampé R
    Nat Nanotechnol; 2007 Apr; 2(4):220-5. PubMed ID: 18654266
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Targeted optimization of a protein nanomachine for operation in biohybrid devices.
    Amrute-Nayak M; Diensthuber RP; Steffen W; Kathmann D; Hartmann FK; Fedorov R; Urbanke C; Manstein DJ; Brenner B; Tsiavaliaris G
    Angew Chem Int Ed Engl; 2010; 49(2):312-6. PubMed ID: 19921669
    [No Abstract]   [Full Text] [Related]  

  • 69. Creating a good impression.
    Haupt K
    Nat Biotechnol; 2002 Sep; 20(9):884-5. PubMed ID: 12205506
    [No Abstract]   [Full Text] [Related]  

  • 70. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nanomechanical properties of reversed surfactant bilayers formed in micrometre-sized holes.
    Jin J; Sugiyama Y; Mitsui K; Arakawa H; Ichinose I
    Chem Commun (Camb); 2008 Feb; (8):954-6. PubMed ID: 18283347
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineered bi-histidine metal chelation sites map the structure of the mechanical unfolding transition state of an elastomeric protein domain GB1.
    Shen T; Cao Y; Zhuang S; Li H
    Biophys J; 2012 Aug; 103(4):807-16. PubMed ID: 22947942
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Role of Nanomechanics in Healthcare.
    Nautiyal P; Alam F; Balani K; Agarwal A
    Adv Healthc Mater; 2018 Feb; 7(3):. PubMed ID: 29193838
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanomechanical properties of vimentin intermediate filament dimers.
    Qin Z; Kreplak L; Buehler MJ
    Nanotechnology; 2009 Oct; 20(42):425101. PubMed ID: 19779230
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties.
    Fahs A; Louarn G
    Phys Chem Chem Phys; 2013 Jul; 15(27):11339-48. PubMed ID: 23732983
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Tuneable elastomeric nanochannels for nanofluidic manipulation.
    Huh D; Mills KL; Zhu X; Burns MA; Thouless MD; Takayama S
    Nat Mater; 2007 Jun; 6(6):424-8. PubMed ID: 17486084
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Coarse-grained models of protein folding: toy models or predictive tools?
    Clementi C
    Curr Opin Struct Biol; 2008 Feb; 18(1):10-5. PubMed ID: 18160277
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy.
    Tang J; Ebner A; Kraxberger B; Leitner M; Hykollari A; Kepplinger C; Grunwald C; Gruber HJ; Tampé R; Sleytr UB; Ilk N; Hinterdorfer P
    J Struct Biol; 2009 Oct; 168(1):217-22. PubMed ID: 19232541
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins.
    Cao Y; Yoo T; Li H
    Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11152-7. PubMed ID: 18685107
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Protein design in biological networks: from manipulating the input to modifying the output.
    Van der Sloot AM; Kiel C; Serrano L; Stricher F
    Protein Eng Des Sel; 2009 Sep; 22(9):537-42. PubMed ID: 19574296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.