These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17943597)

  • 1. Reference values and improvement of aerodynamic drag in professional cyclists.
    García-López J; Rodríguez-Marroyo JA; Juneau CE; Peleteiro J; Martínez AC; Villa JG
    J Sports Sci; 2008 Feb; 26(3):277-86. PubMed ID: 17943597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling sprint cycling using field-derived parameters and forward integration.
    Martin JC; Gardner AS; Barras M; Martin DT
    Med Sci Sports Exerc; 2006 Mar; 38(3):592-7. PubMed ID: 16540850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of velodrome tests to evaluate aerodynamic drag in professional cyclists.
    García-López J; Ogueta-Alday A; Larrazabal J; Rodríguez-Marroyo JA
    Int J Sports Med; 2014 May; 35(5):451-5. PubMed ID: 24081618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body mass scaling of frontal area in competitive cyclists not using aero-handlebars.
    Heil DP
    Eur J Appl Physiol; 2002 Oct; 87(6):520-8. PubMed ID: 12355191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Verboven P; Nicolai B; Carmeliet J
    J Biomech Eng; 2014 Jan; 136(1):011005. PubMed ID: 24149940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics analysis of drag and convective heat transfer of individual body segments for different cyclist positions.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2011 Jun; 44(9):1695-701. PubMed ID: 21497817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validity of a novel device for real-time analysis of cyclists' drag area.
    Valenzuela PL; Alcalde Y; Gil-Cabrera J; Talavera E; Lucia A; Barranco-Gil D
    J Sci Med Sport; 2020 Apr; 23(4):421-425. PubMed ID: 31740264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerodynamic drag modeling of alpine skiers performing giant slalom turns.
    Meyer F; Le Pelley D; Borrani F
    Med Sci Sports Exerc; 2012 Jun; 44(6):1109-15. PubMed ID: 22143110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests.
    Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J
    J Biomech; 2010 May; 43(7):1262-8. PubMed ID: 20171640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of the virtual elevation field test method when assessing the aerodynamics of para-cyclists with a uni-lateral trans-tibial amputation.
    Dyer B; Disley BX
    Disabil Rehabil Assist Technol; 2018 Feb; 13(2):107-111. PubMed ID: 28287007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New method to estimate the cycling frontal area.
    Debraux P; Bertucci W; Manolova AV; Rogier S; Lodini A
    Int J Sports Med; 2009 Apr; 30(4):266-72. PubMed ID: 19199206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of aerodynamic and rolling resistances in mountain-bike field conditions.
    Bertucci WM; Rogier S; Reiser RF
    J Sports Sci; 2013; 31(14):1606-13. PubMed ID: 23713547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of a novel device for indoor analysis of cyclists' drag area.
    Ordiñana-Pérez M; Mateo-March M; Monteagudo P; Zabala M; Blasco-Lafarga C
    Eur J Sport Sci; 2023 Jan; 23(1):1-7. PubMed ID: 34842048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of time trial cycling position on physiological and aerodynamic variables.
    Fintelman DM; Sterling M; Hemida H; Li FX
    J Sports Sci; 2015; 33(16):1730-7. PubMed ID: 25658151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrotactile feedback for correcting aerodynamic position of a cyclist.
    Peeters T; Vleugels J; Garimella R; Truijen S; Saeys W; Verwulgen S
    J Sports Sci; 2020 Oct; 38(19):2193-2199. PubMed ID: 32529942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerodynamic study of time-trial helmets in cycling racing using CFD analysis.
    Beaumont F; Taiar R; Polidori G; Trenchard H; Grappe F
    J Biomech; 2018 Jan; 67():1-8. PubMed ID: 29150346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.
    Chabroux V; Barelle C; Favier D
    J Appl Biomech; 2012 Jul; 28(3):317-23. PubMed ID: 22084053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic characteristics as determinants of the drafting effect in cycling.
    Edwards AG; Byrnes WC
    Med Sci Sports Exerc; 2007 Jan; 39(1):170-6. PubMed ID: 17218899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of body mass in endurance bicycling.
    Swain DP
    Med Sci Sports Exerc; 1994 Jan; 26(1):58-63. PubMed ID: 8133740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of different aero handlebar positions on aerodynamic and gas exchange variables.
    Ghasemi M; Curnier D; Caru M; Trépanier JY; Périé D
    J Biomech; 2022 Jun; 139():111128. PubMed ID: 35598349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.