These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1794438)

  • 1. Difference in size of bone islands formed by isolated bone cells transplanted intramuscularly under various conditions.
    Moskalewski S; Dabrowski M; Hyc A
    Folia Histochem Cytobiol; 1991; 29(3):125-30. PubMed ID: 1794438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference in shape of bone formed by isolated calvarial and scapular osteoblasts transplanted under various conditions.
    Moskalewski S; Osiecka A; Hyc A; Malejczyk J
    Folia Histochem Cytobiol; 1989; 27(1):25-33. PubMed ID: 2737347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of bone formed intramuscularly after transplantation of scapular and calvarial osteoblasts.
    Moskalewski S; Osiecka A; Malejczyk J
    Bone; 1988; 9(2):101-6. PubMed ID: 3044403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of bone formed in transplants of isolated scapular and vertebral osteoblasts.
    Moskalewski S; Hyc A; Osiecka A; Jakubicz D
    Folia Histochem Cytobiol; 1990; 28(1-2):35-41. PubMed ID: 2097181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural differences between bone formed intramuscularly following the transplantation of isolated calvarial bone cells or chondrocytes.
    Moskalewski S; Malejczyk J; Osiecka A
    Anat Embryol (Berl); 1986; 175(2):271-7. PubMed ID: 3548483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone formation by isolated calvarial osteoblasts in syngeneic and allogeneic transplants: light microscopic observations.
    Moskalewski S; Boonekamp PM; Scherft JP
    Am J Anat; 1983 Jun; 167(2):249-63. PubMed ID: 6351584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary phosphate deprivation and supplementation of recipient mice on bone formation by transplanted cells from normal and X-linked hypophosphatemic mice.
    Ecarot B; Glorieux FH; Desbarats M; Travers R; Labelle L
    J Bone Miner Res; 1992 May; 7(5):523-30. PubMed ID: 1319665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats].
    Liu Y; Yu J; Bai J; Gu JS; Cai B; Zhou X
    Zhonghua Shao Shang Za Zhi; 2013 Dec; 29(6):548-53. PubMed ID: 24495643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow-derived mesenchymal cells can rescue osteogenic capacity of devitalized autologous bone.
    Tohma Y; Ohgushi H; Morishita T; Dohi Y; Tadokoro M; Tanaka Y; Takakura Y
    J Tissue Eng Regen Med; 2008 Jan; 2(1):61-8. PubMed ID: 18361480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bone formation ingrafted periosteum harvested from tibia and calvaria.
    Fujii T; Ueno T; Kagawa T; Sakata Y; Sugahara T
    Microsc Res Tech; 2006 Jul; 69(7):580-4. PubMed ID: 16718663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation by transplanted human osteoblasts cultured within collagen sponge with dexamethasone in vitro.
    Yamanouchi K; Satomura K; Gotoh Y; Kitaoka E; Tobiume S; Kume K; Nagayama M
    J Bone Miner Res; 2001 May; 16(5):857-67. PubMed ID: 11341330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective bone formation by Hyp mouse bone cells transplanted into normal mice: evidence in favor of an intrinsic osteoblast defect.
    Ecarot B; Glorieux FH; Desbarats M; Travers R; Labelle L
    J Bone Miner Res; 1992 Feb; 7(2):215-20. PubMed ID: 1315116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast isolation from murine calvaria and long bones.
    Bakker AD; Klein-Nulend J
    Methods Mol Biol; 2012; 816():19-29. PubMed ID: 22130919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling of bone and bones: effects of altered mechanical stress on the regeneration of transplanted bones.
    Storey E; Feik SA
    Anat Rec; 1986 Jun; 215(2):153-66. PubMed ID: 3524316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in the volume and density of calvarial split bone grafts after alveolar ridge augmentation.
    Smolka W; Eggensperger N; Carollo V; Ozdoba C; Iizuka T
    Clin Oral Implants Res; 2006 Apr; 17(2):149-55. PubMed ID: 16584410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Premature fusion of facial sutures with free periosteal grafts. An experimental study with special reference to bone formation with free periosteal grafts from the tibia, the scapula and the calvarium.
    Alhopuro S
    Scand J Plast Reconstr Surg Suppl; 1978; 17():1-68. PubMed ID: 299657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblast and osteoclast precursors in primary cultures of calvarial bone cells.
    Burger EH; Boonekamp PM; Nijweide PJ
    Anat Rec; 1986 Jan; 214(1):32-40. PubMed ID: 3954057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo bone formation by human bone marrow stromal cells: reconstruction of the mouse calvarium and mandible.
    Mankani MH; Kuznetsov SA; Wolfe RM; Marshall GW; Robey PG
    Stem Cells; 2006 Sep; 24(9):2140-9. PubMed ID: 16763200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hormonal milieu in early stages of bone cell differentiation modifies the subsequent sex-specific responsiveness of the developing bone to gonadal steroids.
    Berger E; Bleiberg I; Weisman Y; Lifschitz-Mercer B; Leider-Trejo L; Harel A; Kaye AM; Somjen D
    J Bone Miner Res; 2001 May; 16(5):823-31. PubMed ID: 11341327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.