These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 17944545)

  • 1. A new approach to the hazard classification of alloys based on transformation/dissolution.
    Skeaff JM; Hardy DJ; King P
    Integr Environ Assess Manag; 2008 Jan; 4(1):75-93. PubMed ID: 17944545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in metals classification under the United Nations globally harmonized system of classification and labeling.
    Skeaff J; Adams WJ; Rodriguez P; Brouwers T; Waeterschoot H
    Integr Environ Assess Manag; 2011 Oct; 7(4):559-76. PubMed ID: 21425236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation/dissolution characteristics of a nickel matte and nickel concentrates for acute and chronic hazard classification.
    Skeaff JM; Beaudoin R
    Integr Environ Assess Manag; 2015 Jan; 11(1):130-42. PubMed ID: 25103894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface passivity largely governs the bioaccessibility of nickel-based powder particles at human exposure conditions.
    Hedberg YS; Herting G; Latvala S; Elihn K; Karlsson HL; Odnevall Wallinder I
    Regul Toxicol Pharmacol; 2016 Nov; 81():162-170. PubMed ID: 27575685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact.
    Hedberg Y; Midander K; Wallinder IO
    Integr Environ Assess Manag; 2010 Jul; 6(3):456-68. PubMed ID: 20821707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel.
    Midander K; de Frutos A; Hedberg Y; Darrie G; Wallinder IO
    Integr Environ Assess Manag; 2010 Jul; 6(3):441-55. PubMed ID: 20821706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation/dissolution characterization of tungsten and tungsten compounds for aquatic hazard classification.
    Huntsman P; Skeaff J; Pawlak M; Beaudoin R
    Integr Environ Assess Manag; 2018 Jul; 14(4):498-508. PubMed ID: 29464838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addressing aquatic hazard classification for metals, metal compounds and alloys in marine systems.
    Huntsman-Mapila P; Skeaff JM; Pawlak M; Beaudoin R
    Mar Pollut Bull; 2016 Aug; 109(1):550-557. PubMed ID: 27289283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhalation toxicity of 316L stainless steel powder in relation to bioaccessibility.
    Stockmann-Juvala H; Hedberg Y; Dhinsa NK; Griffiths DR; Brooks PN; Zitting A; Wallinder IO; Santonen T
    Hum Exp Toxicol; 2013 Nov; 32(11):1137-54. PubMed ID: 23690226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity assessment and health hazard classification of stainless steels.
    Taxell P; Huuskonen P
    Regul Toxicol Pharmacol; 2022 Aug; 133():105227. PubMed ID: 35817207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccessibility of nickel and cobalt in synthetic gastric and lung fluids and its potential use in alloy classification.
    Heim KE; Danzeisen R; Verougstraete V; Gaidou F; Brouwers T; Oller AR
    Regul Toxicol Pharmacol; 2020 Feb; 110():104549. PubMed ID: 31811877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.
    Ortiz AJ; Fernández E; Vicente A; Calvo JL; Ortiz C
    Am J Orthod Dentofacial Orthop; 2011 Sep; 140(3):e115-22. PubMed ID: 21889059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of metal particles in tissue culture. I. A new assay method using cell counts in the phase of replication.
    Pappas AM; Cohen J
    J Bone Joint Surg Am; 1968 Apr; 50(3):535-47. PubMed ID: 5644870
    [No Abstract]   [Full Text] [Related]  

  • 14. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination.
    Wilks SA; Michels HT; Keevil CW
    Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity evaluation of particles formed during 3D-printing: Cytotoxic, genotoxic, and inflammatory response in lung and macrophage models.
    Vallabani NVS; Alijagic A; Persson A; Odnevall I; Särndahl E; Karlsson HL
    Toxicology; 2022 Feb; 467():153100. PubMed ID: 35032623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion release from orthodontic brackets in 3 mouthwashes: an in-vitro study.
    Danaei SM; Safavi A; Roeinpeikar SM; Oshagh M; Iranpour S; Omidkhoda M
    Am J Orthod Dentofacial Orthop; 2011 Jun; 139(6):730-4. PubMed ID: 21640878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weight-of-Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification.
    Burton GA; Hudson ML; Huntsman P; Carbonaro RF; Rader KJ; Waeterschoot H; Baken S; Garman E
    Environ Toxicol Chem; 2019 Sep; 38(9):1839-1849. PubMed ID: 31099932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium--a comparison.
    Herting G; Wallinder IO; Leygraf C
    J Environ Monit; 2008 Sep; 10(9):1092-8. PubMed ID: 18728903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccessibility of nickel and cobalt in powders and massive forms of stainless steel, nickel- or cobalt-based alloys, and nickel and cobalt metals in artificial sweat.
    Wang X; Herting G; Wei Z; Odnevall Wallinder I; Hedberg Y
    Regul Toxicol Pharmacol; 2019 Aug; 106():15-26. PubMed ID: 31028796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.
    Gutierrez H; Portman T; Pershin V; Ringuette M
    J Appl Microbiol; 2013 Mar; 114(3):680-7. PubMed ID: 23228103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.