BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17944832)

  • 1. Crystal structure of the Leishmania major phosphodiesterase LmjPDEB1 and insight into the design of the parasite-selective inhibitors.
    Wang H; Yan Z; Geng J; Kunz S; Seebeck T; Ke H
    Mol Microbiol; 2007 Nov; 66(4):1029-38. PubMed ID: 17944832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic nucleotide specific phosphodiesterases of Leishmania major.
    Johner A; Kunz S; Linder M; Shakur Y; Seebeck T
    BMC Microbiol; 2006 Mar; 6():25. PubMed ID: 16522215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity.
    Huai Q; Liu Y; Francis SH; Corbin JD; Ke H
    J Biol Chem; 2004 Mar; 279(13):13095-101. PubMed ID: 14668322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphodiesterase inhibitors as a new generation of antiprotozoan drugs: exploiting the benefit of enzymes that are highly conserved between host and parasite.
    Seebeck T; Sterk GJ; Ke H
    Future Med Chem; 2011 Aug; 3(10):1289-306. PubMed ID: 21859303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Unique Sub-Pocket for Improvement of Selectivity of Phosphodiesterase Inhibitors in CNS.
    Wang Y; Ke H
    Adv Neurobiol; 2017; 17():463-471. PubMed ID: 28956343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and structural characterization of Trypanosoma cruzi phosphodiesterase C and Implications for design of parasite selective inhibitors.
    Wang H; Kunz S; Chen G; Seebeck T; Wan Y; Robinson H; Martinelli S; Ke H
    J Biol Chem; 2012 Apr; 287(15):11788-97. PubMed ID: 22356915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for the activity of drugs that inhibit phosphodiesterases.
    Card GL; England BP; Suzuki Y; Fong D; Powell B; Lee B; Luu C; Tabrizizad M; Gillette S; Ibrahim PN; Artis DR; Bollag G; Milburn MV; Kim SH; Schlessinger J; Zhang KY
    Structure; 2004 Dec; 12(12):2233-47. PubMed ID: 15576036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homology modeling, docking studies and molecular dynamic simulations using graphical processing unit architecture to probe the type-11 phosphodiesterase catalytic site: a computational approach for the rational design of selective inhibitors.
    Cichero E; D'Ursi P; Moscatelli M; Bruno O; Orro A; Rotolo C; Milanesi L; Fossa P
    Chem Biol Drug Des; 2013 Dec; 82(6):718-31. PubMed ID: 23865680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity.
    Wang H; Yan Z; Yang S; Cai J; Robinson H; Ke H
    Biochemistry; 2008 Dec; 47(48):12760-8. PubMed ID: 18983167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7.
    Wang H; Liu Y; Chen Y; Robinson H; Ke H
    J Biol Chem; 2005 Sep; 280(35):30949-55. PubMed ID: 15994308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic Nucleotide-Specific Phosphodiesterases as Potential Drug Targets for Anti-Leishmania Therapy.
    Sebastián-Pérez V; Hendrickx S; Munday JC; Kalejaiye T; Martínez A; Campillo NE; de Koning H; Caljon G; Maes L; Gil C
    Antimicrob Agents Chemother; 2018 Oct; 62(10):. PubMed ID: 30104270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between cyclic nucleotide phosphodiesterase 11 catalytic site and substrates or tadalafil and role of a critical Gln-869 hydrogen bond.
    Weeks JL; Corbin JD; Francis SH
    J Pharmacol Exp Ther; 2009 Oct; 331(1):133-41. PubMed ID: 19641165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity.
    Ke H; Wang H
    Curr Top Med Chem; 2007; 7(4):391-403. PubMed ID: 17305581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study.
    Lau JK; Li XB; Cheng YK
    J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of TbPDE2A, a novel cyclic nucleotide-specific phosphodiesterase from the protozoan parasite Trypanosoma brucei.
    Zoraghi R; Kunz S; Gong K; Seebeck T
    J Biol Chem; 2001 Apr; 276(15):11559-66. PubMed ID: 11134002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphodiesterase inhibitors: factors that influence potency, selectivity, and action.
    Francis SH; Houslay MD; Conti M
    Handb Exp Pharmacol; 2011; (204):47-84. PubMed ID: 21695635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a cAMP-specific phosphodiesterase (TbPDE2B) from Trypanosoma brucei.
    Rascón A; Soderling SH; Schaefer JB; Beavo JA
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4714-9. PubMed ID: 11930017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical amino acids in phosphodiesterase-5 catalytic site that provide for high-affinity interaction with cyclic guanosine monophosphate and inhibitors.
    Zoraghi R; Francis SH; Corbin JD
    Biochemistry; 2007 Nov; 46(47):13554-63. PubMed ID: 17979301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity.
    Zoraghi R; Corbin JD; Francis SH
    J Biol Chem; 2006 Mar; 281(9):5553-8. PubMed ID: 16407275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design.
    Jansen C; Kooistra AJ; Kanev GK; Leurs R; de Esch IJ; de Graaf C
    J Med Chem; 2016 Aug; 59(15):7029-65. PubMed ID: 26908025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.