BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17944874)

  • 1. The coexistence of multiple receptors in a single nerve terminal provides evidence for pre-synaptic integration.
    Ladera C; Godino Mdel C; Martín R; Luján R; Shigemoto R; Ciruela F; Torres M; Sánchez-Prieto J
    J Neurochem; 2007 Dec; 103(6):2314-26. PubMed ID: 17944874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.
    Martín R; Ladera C; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Neuropharmacology; 2008 Sep; 55(4):464-73. PubMed ID: 18514236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses.
    Hirono M; Yoshioka T; Konishi S
    Nat Neurosci; 2001 Dec; 4(12):1207-16. PubMed ID: 11704764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors.
    Wang SJ
    Synapse; 2007 Jun; 61(6):401-11. PubMed ID: 17372967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional GABA(B) receptors are expressed at the cone photoreceptor terminals in bullfrog retina.
    Liu J; Zhao JW; Du JL; Yang XL
    Neuroscience; 2005; 132(1):103-13. PubMed ID: 15780470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Group II metabotropic glutamate receptors in anxiety circuitry: correspondence of physiological response and subcellular distribution.
    Muly EC; Mania I; Guo JD; Rainnie DG
    J Comp Neurol; 2007 Dec; 505(6):682-700. PubMed ID: 17948876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses.
    Quinta-Ferreira ME; Matias CM
    Brain Res; 2005 Jun; 1047(1):1-9. PubMed ID: 15950598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabotropic receptors for glutamate and GABA in pain.
    Goudet C; Magnaghi V; Landry M; Nagy F; Gereau RW; Pin JP
    Brain Res Rev; 2009 Apr; 60(1):43-56. PubMed ID: 19146876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic activation of GABA(B) receptors regulates neuronal network activity and entrainment.
    Brown JT; Davies CH; Randall AD
    Eur J Neurosci; 2007 May; 25(10):2982-90. PubMed ID: 17561812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic cross-talk of beta-adrenoreceptor and 5-hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals.
    Wang SJ; Coutinho V; Sihra TS
    Br J Pharmacol; 2002 Dec; 137(8):1371-9. PubMed ID: 12466248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear localization of functional metabotropic glutamate receptor mGlu1 in HEK293 cells and cortical neurons: role in nuclear calcium mobilization and development.
    Jong YJ; Schwetye KE; O'Malley KL
    J Neurochem; 2007 Apr; 101(2):458-69. PubMed ID: 17250682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation of glutamate release from rat cerebral cortex nerve terminal by subanesthetic concentration propofol.
    Lu CW; Lin TY; Chiang HS; Wang SJ
    Synapse; 2009 Sep; 63(9):773-81. PubMed ID: 19489007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of GABA(B) receptors in the regulation of excitatory neurotransmission.
    Marshall FH
    Results Probl Cell Differ; 2008; 44():87-98. PubMed ID: 17549439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA modulates presynaptic signalling mediated by dinucleotides on rat synaptic terminals.
    Gómez-Villafuertes R; Pintor J; Gualix J; Miras-Portugal MT
    J Pharmacol Exp Ther; 2004 Mar; 308(3):1148-57. PubMed ID: 14711934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial compensation for N-type Ca(2+) channel loss by P/Q-type Ca(2+) channels underlines the differential release properties supported by these channels at cerebrocortical nerve terminals.
    Ladera C; Martín R; Bartolomé-Martín D; Torres M; Sánchez-Prieto J
    Eur J Neurosci; 2009 Mar; 29(6):1131-40. PubMed ID: 19302149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the exogenous Drosophila octopamine receptor gene to study Gq-coupled receptor-mediated responses in mammalian neurons.
    Morita M; Susuki J; Amino H; Yoshiki F; Moizumi S; Kudo Y
    Neuroscience; 2006; 137(2):545-53. PubMed ID: 16289891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Group II metabotropic glutamate receptors reduce excitatory but not inhibitory neurotransmission in rat barrel cortex in vivo.
    Cahusac PM; Wan H
    Neuroscience; 2007 Apr; 146(1):202-12. PubMed ID: 17346894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAB receptor-mediated modulation of metabotropic glutamate signaling and synaptic plasticity in central neurons.
    Tabata T; Kano M
    Adv Pharmacol; 2010; 58():149-73. PubMed ID: 20655482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission.
    Martín ED; Fernández M; Perea G; Pascual O; Haydon PG; Araque A; Ceña V
    Glia; 2007 Jan; 55(1):36-45. PubMed ID: 17004232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.