BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 17945133)

  • 1. Fusionless treatment of scoliosis.
    Guille JT; D'Andrea LP; Betz RR
    Orthop Clin North Am; 2007 Oct; 38(4):541-5, vii. PubMed ID: 17945133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical assessment of thoracic spine stapling.
    Puttlitz CM; Masaru F; Barkley A; Diab M; Acaroglu E
    Spine (Phila Pa 1976); 2007 Apr; 32(7):766-71. PubMed ID: 17414910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of staple on growth rate of vertebral growth plates in goat scoliosis].
    Song D; Meng C; Zheng G; Zhang W; Zhang R; Bai L; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Jan; 23(1):72-5. PubMed ID: 19192884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of animal models in fusionless scoliosis investigations.
    Braun JT; Akyuz E; Ogilvie JW
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S35-45. PubMed ID: 16138065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation.
    Hachem B; Aubin CE; Parent S
    Eur Spine J; 2017 Jun; 26(6):1610-1617. PubMed ID: 28070685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The efficacy and integrity of shape memory alloy staples and bone anchors with ligament tethers in the fusionless treatment of experimental scoliosis.
    Braun JT; Akyuz E; Ogilvie JW; Bachus KN
    J Bone Joint Surg Am; 2005 Sep; 87(9):2038-51. PubMed ID: 16140820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of two clinically relevant fusionless scoliosis implant strategies on the health of the intervertebral disc: analysis in an immature goat model.
    Hunt KJ; Braun JT; Christensen BA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):371-7. PubMed ID: 20110838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis: preliminary results.
    Lalonde NM; Aubin CE; Pannetier R; Villemure I
    Stud Health Technol Inform; 2008; 140():111-5. PubMed ID: 18810010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat.
    Braun JT; Ogilvie JW; Akyuz E; Brodke DS; Bachus KN
    Spine (Phila Pa 1976); 2004 Sep; 29(18):1980-9. PubMed ID: 15371698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusionless surgery for scoliosis.
    Hershman SH; Park JJ; Lonner BS
    Bull Hosp Jt Dis (2013); 2013; 71(1):49-53. PubMed ID: 24032583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the intervertebral disc in correction of scoliotic curves. A theoretical model of idiopathic scoliosis pathogenesis.
    Grivas TB; Vasiliadis ES; Rodopoulos G; Bardakos N
    Stud Health Technol Inform; 2008; 140():33-6. PubMed ID: 18809995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Newer technologies for the treatment of scoliosis in the growing spine.
    Torre-Healy A; Samdani AF
    Neurosurg Clin N Am; 2007 Oct; 18(4):697-705. PubMed ID: 17991592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis.
    Driscoll M; Aubin CE; Moreau A; Parent S
    Med Biol Eng Comput; 2011 Dec; 49(12):1437-45. PubMed ID: 21755319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The awl-staple versus guidewire method for placing vertebral screws in thoracoscopic anterior spinal fusion and instrumentation for adolescent idiopathic scoliosis.
    Agrawal S; Sucato DJ
    J Spinal Disord Tech; 2008 Aug; 21(6):413-7. PubMed ID: 18679096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging minimally invasive technologies for the management of scoliosis.
    Lonner BS
    Orthop Clin North Am; 2007 Jul; 38(3):431-40; abstract vii-viii. PubMed ID: 17629990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Hemi-Staple for the Fusionless Correction of Pediatric Scoliosis: Influence on Intervertebral Disks and Growth Plates in a Porcine Model.
    Driscoll M; Aubin CÉ; Moreau A; Wakula Y; Amini S; Parent S
    Clin Spine Surg; 2016 Nov; 29(9):457-464. PubMed ID: 27755203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior and thoracoscopic scoliosis surgery for idiopathic scoliosis.
    Upasani VV; Newton PO
    Orthop Clin North Am; 2007 Oct; 38(4):531-40, vi. PubMed ID: 17945132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surgical treatment of congenital scoliosis.
    Hedequist DJ
    Orthop Clin North Am; 2007 Oct; 38(4):497-509, vi. PubMed ID: 17945129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature.
    Burke JG
    Stud Health Technol Inform; 2006; 123():378-84. PubMed ID: 17108455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.