These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17945357)

  • 1. The TASK background K2P channels: chemo- and nutrient sensors.
    Duprat F; Lauritzen I; Patel A; Honoré E
    Trends Neurosci; 2007 Nov; 30(11):573-80. PubMed ID: 17945357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells.
    Tan ZY; Lu Y; Whiteis CA; Benson CJ; Chapleau MW; Abboud FM
    Circ Res; 2007 Nov; 101(10):1009-19. PubMed ID: 17872465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orexin neurons and the TASK of glucosensing.
    Scott MM; Marcus JN; Elmquist JK
    Neuron; 2006 Jun; 50(5):665-7. PubMed ID: 16731504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress.
    Liu C; Cotten JF; Schuyler JA; Fahlman CS; Au JD; Bickler PE; Yost CS
    Brain Res; 2005 Jan; 1031(2):164-73. PubMed ID: 15649441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular physiology of pH-sensitive background K(2P) channels.
    Lesage F; Barhanin J
    Physiology (Bethesda); 2011 Dec; 26(6):424-37. PubMed ID: 22170960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.
    Mulkey DK; Talley EM; Stornetta RL; Siegel AR; West GH; Chen X; Sen N; Mistry AM; Guyenet PG; Bayliss DA
    J Neurosci; 2007 Dec; 27(51):14049-58. PubMed ID: 18094244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TASK-like potassium channels and oxygen sensing in the carotid body.
    Buckler KJ
    Respir Physiol Neurobiol; 2007 Jul; 157(1):55-64. PubMed ID: 17416212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular distribution of oxygen sensor candidates-oxidases, cytochromes, K+-channels--in the carotid body.
    Kummer W; Yamamoto Y
    Microsc Res Tech; 2002 Nov; 59(3):234-42. PubMed ID: 12384967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons.
    Aller MI; Veale EL; Linden AM; Sandu C; Schwaninger M; Evans LJ; Korpi ER; Mathie A; Wisden W; Brickley SG
    J Neurosci; 2005 Dec; 25(49):11455-67. PubMed ID: 16339039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing.
    Buckler KJ
    Pflugers Arch; 2015 May; 467(5):1013-25. PubMed ID: 25623783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-pore domain k(+) channels and their role in chemoreception.
    Buckler KJ
    Adv Exp Med Biol; 2010; 661():15-30. PubMed ID: 20204721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence.
    Buttigieg J; Pan J; Yeger H; Cutz E
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L598-607. PubMed ID: 22865553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of K2P3.1 (TASK-1), K2P9.1 (TASK-3), and TASK-1/3 heteromer by reactive oxygen species.
    Papreck JR; Martin EA; Lazzarini P; Kang D; Kim D
    Pflugers Arch; 2012 Nov; 464(5):471-80. PubMed ID: 23007462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ventilatory stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration.
    Cotten JF; Keshavaprasad B; Laster MJ; Eger EI; Yost CS
    Anesth Analg; 2006 Mar; 102(3):779-85. PubMed ID: 16492828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that TASK1 channels contribute to the background current in AH/type II neurons of the guinea-pig intestine.
    Matsuyama H; Nguyen TV; Hunne B; Thacker M; Needham K; McHugh D; Furness JB
    Neuroscience; 2008 Aug; 155(3):738-50. PubMed ID: 18590799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity and interactions of Ba2+ and Cs+ with wild-type and mutant TASK1 K+ channels expressed in Xenopus oocytes.
    O'Connell AD; Morton MJ; Sivaprasadarao A; Hunter M
    J Physiol; 2005 Feb; 562(Pt 3):687-96. PubMed ID: 15611021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of pH-sensitive TASK channels in central respiratory chemoreception.
    Bayliss DA; Barhanin J; Gestreau C; Guyenet PG
    Pflugers Arch; 2015 May; 467(5):917-29. PubMed ID: 25346157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons.
    Burgos P; Zúñiga R; Domínguez P; Delgado-López F; Plant LD; Zúñiga L
    Biochem Biophys Res Commun; 2014 Oct; 453(4):754-60. PubMed ID: 25305496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides.
    Varas R; Wyatt CN; Buckler KJ
    J Physiol; 2007 Sep; 583(Pt 2):521-36. PubMed ID: 17615104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors.
    Mathie A
    J Physiol; 2007 Jan; 578(Pt 2):377-85. PubMed ID: 17068099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.