These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1794542)
1. Single half-turnovers of the glucose transporter of the human erythrocyte. Critchley AJ; Lowe AG Biochem Soc Trans; 1991 Nov; 19(4):417S. PubMed ID: 1794542 [No Abstract] [Full Text] [Related]
2. A single half-turnover of the glucose carrier of the human erythrocyte. Lowe AG; Walmsley AR Biochim Biophys Acta; 1987 Oct; 903(3):547-50. PubMed ID: 3663659 [TBL] [Abstract][Full Text] [Related]
4. Pre-steady-state uptake of D-glucose by the human erythrocyte is inconsistent with a circulating carrier mechanism. Naftalin RJ Biochim Biophys Acta; 1988 Dec; 946(2):431-8. PubMed ID: 3207758 [TBL] [Abstract][Full Text] [Related]
5. The glucose transporter of human erythrocytes--working hypothesis for its functional mechanism. Widdas WF Exp Physiol; 1998 Mar; 83(2):186-94. PubMed ID: 9568478 [No Abstract] [Full Text] [Related]
6. Evidence from temperature studies that the human erythrocyte hexose transporter has a transient memory of its dissociated ligands. Naftalin RJ Exp Physiol; 1998 Mar; 83(2):253-8. PubMed ID: 9568486 [TBL] [Abstract][Full Text] [Related]
7. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 1. Inhibition of glucose transport. Mullins RE; Langdon RG Biochemistry; 1980 Mar; 19(6):1199-205. PubMed ID: 7189410 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of glucose transport in human erythrocytes by ubiquinone Q0. Lowe AG; Critchley AJ; Brass A Biochim Biophys Acta; 1991 Nov; 1069(2):223-8. PubMed ID: 1932061 [TBL] [Abstract][Full Text] [Related]
9. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport. Wheeler TJ; Whelan JD Biochemistry; 1988 Mar; 27(5):1441-50. PubMed ID: 3365399 [TBL] [Abstract][Full Text] [Related]
10. Glucose transport inhibitors protect against 1,2-cyclohexanedione-produced potassium loss from human red blood cells. Baker GF; O'Gorman R; Baker P Exp Physiol; 1998 Mar; 83(2):239-42. PubMed ID: 9568484 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation of the human erythrocyte glucose transporter by protein kinase C: localization of the site of in vivo and in vitro phosphorylation. Deziel MR; Lippes HA; Rampal AL; Jung CY Int J Biochem; 1989; 21(7):807-14. PubMed ID: 2759335 [TBL] [Abstract][Full Text] [Related]
12. GLUT-1 mediation of rapid glucose transport in dolphin (Tursiops truncatus) red blood cells. Craik JD; Young JD; Cheeseman CI Am J Physiol; 1998 Jan; 274(1):R112-9. PubMed ID: 9458906 [TBL] [Abstract][Full Text] [Related]
13. Exofacial photolabelling of the human erythrocyte glucose transporter with an azitrifluoroethylbenzoyl-substituted bismannose. Clark AE; Holman GD Biochem J; 1990 Aug; 269(3):615-22. PubMed ID: 2390055 [TBL] [Abstract][Full Text] [Related]
14. Maltosyl isothiocyanate: an affinity label for the glucose transporter of the human erythrocyte membrane. 2. Identification of the transporter. Mullins RE; Langdon RG Biochemistry; 1980 Mar; 19(6):1205-12. PubMed ID: 7189411 [TBL] [Abstract][Full Text] [Related]
15. Studies on the expression of the human erythrocyte glucose transporter (GLUT1) in the yeast Saccharomyces cerevisiae. Simons CH; Weinglass AB; Baldwin SA Biochem Soc Trans; 1997 Aug; 25(3):463S. PubMed ID: 9388684 [No Abstract] [Full Text] [Related]
16. Random distribution of the glucose transporter of human erythrocytes in reconstituted liposomes. Sase S; Anraku Y; Nagano M; Osumi M; Kasahara M J Biol Chem; 1982 Sep; 257(18):11100-5. PubMed ID: 7202007 [TBL] [Abstract][Full Text] [Related]
17. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric or symmetric? Cytosolic modulation of human erythrocyte hexose transfer. Carruthers A; Melchior DL Biochim Biophys Acta; 1983 Feb; 728(2):254-66. PubMed ID: 6681982 [TBL] [Abstract][Full Text] [Related]
19. D-glucose binding increases secondary structure of human erythrocyte monosaccharide transport protein. Pawagi AB; Deber CM Biochem Biophys Res Commun; 1987 Jun; 145(3):1087-91. PubMed ID: 3606595 [TBL] [Abstract][Full Text] [Related]
20. Reconstitution of the monosaccharide-transport system of the human erythrocyte membrane. Nickson JK; Jones MN Biochem Soc Trans; 1977; 5(1):147-9. PubMed ID: 892146 [No Abstract] [Full Text] [Related] [Next] [New Search]