These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17945643)

  • 1. Frequency tracking of atrial fibrillation using Hidden Markov Models.
    Nilsson F; Stridh M; Sörnmo L
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1406-9. PubMed ID: 17945643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency tracking of atrial fibrillation using hidden Markov models.
    Sandberg F; Stridh M; Sörnmo L
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):502-11. PubMed ID: 18269985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral validation improves frequency tracking obtained by time-frequency analysis during atrial fibrillation.
    Corino VD; Mainardi LT; Stridh M; Sornmo L
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5733-6. PubMed ID: 19164019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting spontaneous termination of atrial fibrillation using the surface ECG.
    Nilsson F; Stridh M; Bollmann A; Sörnmo L
    Med Eng Phys; 2006 Oct; 28(8):802-8. PubMed ID: 16442328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of atrial activities for abnormality detection by phase rectified signal averaging technique.
    Maji U; Pal S; Mitra M
    J Med Eng Technol; 2015; 39(5):291-302. PubMed ID: 26084877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to determine myocardial ischemia by hidden Markov models.
    Tang X; Xia L; Liu W; Peng Y; Gao T; Zeng Y
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1065-70. PubMed ID: 22263753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Extended Bayesian Framework for Atrial and Ventricular Activity Separation in Atrial Fibrillation.
    Roonizi EK; Sassi R
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1573-1580. PubMed ID: 27834661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ECG signal analysis through hidden Markov models.
    Andreão RV; Dorizzi B; Boudy J
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1541-9. PubMed ID: 16916088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting spontaneous termination of atrial fibrillation based on the RR interval.
    Sun RR; Wang YY
    Proc Inst Mech Eng H; 2009 Aug; 223(6):713-26. PubMed ID: 19743637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting initiation and termination of atrial fibrillation from the ECG.
    Hayn D; Kollmann A; Schreier G
    Biomed Tech (Berl); 2007 Feb; 52(1):5-10. PubMed ID: 17313327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An echo state neural network for QRST cancellation during atrial fibrillation.
    Petrėnas A; Marozas V; Sörnmo L; Lukosevicius A
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2950-7. PubMed ID: 22929362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG.
    Christov I; Krasteva V; Simova I; Neycheva T; Schmid R
    Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved time--frequency analysis of atrial fibrillation signals using spectral modeling.
    Corino VD; Mainardi LT; Stridh M; Sörnmo L
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2723-30. PubMed ID: 19126451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A support system for ECG segmentation based on Hidden Markov Models.
    Thomas J; Rose C; Charpillet F
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3228-31. PubMed ID: 18002683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RR interval analysis for detection of Atrial Fibrillation in ECG monitors.
    Ghodrati A; Murray B; Marinello S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():601-4. PubMed ID: 19162727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the spontaneous termination of atrial fibrillation based on poincare section in the electrocardiogram phase space.
    Parvaneh S; Golpayegani MR; Firoozabadi M; Haghjoo M
    Proc Inst Mech Eng H; 2012 Jan; 226(1):3-20. PubMed ID: 22888580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential characterization of atrial tachyarrhythmias based on ECG time-frequency analysis.
    Stridh M; Sörnmo L; Meurling CJ; Olsson SB
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):100-14. PubMed ID: 14723499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology.
    Martínez-Iniesta M; Ródenas J; Alcaraz R; Rieta JJ
    Ann Biomed Eng; 2017 Aug; 45(8):1890-1907. PubMed ID: 28421394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of atrial fibrillation using discrete-state Markov models and Random Forests.
    Kalidas V; Tamil LS
    Comput Biol Med; 2019 Oct; 113():103386. PubMed ID: 31446318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of novel spectral estimator for fractionated electrogram analysis is helpful to discern atrial fibrillation type.
    Ciaccio EJ; Biviano AB; Garan H
    Comput Methods Programs Biomed; 2014 Nov; 117(2):343-50. PubMed ID: 25035244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.