These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17945748)

  • 1. Velocity-selective recording from frog nerve using a multi-contact cuff electrode.
    Schuettler M; Seetohul V; Taylor J; Donaldson N
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2962-5. PubMed ID: 17945748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibre-selective recording from the peripheral nerves of frogs using a multi-electrode cuff.
    Schuettler M; Donaldson N; Seetohul V; Taylor J
    J Neural Eng; 2013 Jun; 10(3):036016. PubMed ID: 23640008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
    Rieger R; Schuettler M; Chuang SC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An implantable ENG detector with in-system velocity selective recording (VSR) capability.
    Clarke C; Rieger R; Schuettler M; Donaldson N; Taylor J
    Med Biol Eng Comput; 2017 Jun; 55(6):885-895. PubMed ID: 27638107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved nerve cuff electrode recordings with subthreshold anodic currents.
    Sahin M; Durand DM
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1044-50. PubMed ID: 9691579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems.
    Chu JU; Song KI; Han S; Lee SH; Kim J; Kang JY; Hwang D; Suh JK; Choi K; Youn I
    Physiol Meas; 2012 Jun; 33(6):943-67. PubMed ID: 22551721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of contacts configuration and location on selective stimulation of cuff electrode.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    Biomed Mater Eng; 2015; 25(3):237-48. PubMed ID: 26407110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-Loop Control of Functional Electrical Stimulation Using a Selectively Recording and Bidirectional Nerve Cuff Interface.
    Hwang YE; Long L; Filho JS; Genov R; Zariffa J
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():504-513. PubMed ID: 38231810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing the design of bipolar nerve cuff electrodes for improved recording of peripheral nerve activity.
    Sabetian P; Popovic MR; Yoo PB
    J Neural Eng; 2017 Jun; 14(3):036015. PubMed ID: 28251960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse versus longitudinal tripolar configuration for selective stimulation with multipolar cuff electrodes.
    Nielsen TN; Kurstjens GA; Struijk JJ
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):913-9. PubMed ID: 21421427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats.
    Branner A; Normann RA
    Brain Res Bull; 2000 Mar; 51(4):293-306. PubMed ID: 10704779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artefact reduction with alternative cuff configurations.
    Andreasen LN; Struijk JJ
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1160-6. PubMed ID: 14560769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time series classification of multi-channel nerve cuff recordings using deep learning.
    Gill APS; Zariffa J
    PLoS One; 2024; 19(3):e0299271. PubMed ID: 38470880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of differentially measuring afferent and efferent neural activity with a single nerve cuff electrode.
    Sabetian P; Yoo PB
    J Neural Eng; 2020 Jan; 17(1):016040. PubMed ID: 31698350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the number and location of recording contacts on the selectivity of a nerve cuff electrode.
    Zariffa J; Nagai MK; Daskalakis ZJ; Popovic MR
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):420-7. PubMed ID: 19497824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact Neural Interface Using a Single Multichannel Cuff Electrode for a Functional Neuromuscular Stimulation System.
    Song KI; Park SE; Hwang D; Youn I
    Ann Biomed Eng; 2019 Mar; 47(3):754-766. PubMed ID: 30560306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental determination of compound action potential direction and propagation velocity from multi-electrode nerve cuffs.
    Rieger R; Taylor J; Comi E; Donaldson N; Russold M; Mahony CM; McLaughlin JA; McAdams E; Demosthenous A; Jarvis JC
    Med Eng Phys; 2004 Jul; 26(6):531-4. PubMed ID: 15234689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.