BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17945786)

  • 1. The role of mechanical stimulation in engineering of extracellular matrix (ECM).
    Sebastine IM; Williams DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3648-51. PubMed ID: 17945786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanosensing and mechanochemical transduction: how is mechanical energy sensed and converted into chemical energy in an extracellular matrix?
    Silver FH; Siperko LM
    Crit Rev Biomed Eng; 2003; 31(4):255-331. PubMed ID: 15095950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype.
    Stegemann JP; Hong H; Nerem RM
    J Appl Physiol (1985); 2005 Jun; 98(6):2321-7. PubMed ID: 15894540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrostatic pressure differentially regulates outer and inner annulus fibrosus cell matrix production in 3D scaffolds.
    Reza AT; Nicoll SB
    Ann Biomed Eng; 2008 Feb; 36(2):204-13. PubMed ID: 18026839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical strategies for articular cartilage regeneration.
    Darling EM; Athanasiou KA
    Ann Biomed Eng; 2003 Oct; 31(9):1114-24. PubMed ID: 14582614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments.
    Cipitria A; Salmeron-Sanchez M
    Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28792683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the dynamic permeation experiment with implication to cartilaginous tissue engineering.
    Gu WY; Sun DN; Lai WM; Mow VC
    J Biomech Eng; 2004 Aug; 126(4):485-91. PubMed ID: 15543866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay between tissue growth and scaffold degradation in engineered tissue constructs.
    O'Dea RD; Osborne JM; El Haj AJ; Byrne HM; Waters SL
    J Math Biol; 2013 Nov; 67(5):1199-225. PubMed ID: 22986893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds.
    Kisiday JD; Jin M; DiMicco MA; Kurz B; Grodzinsky AJ
    J Biomech; 2004 May; 37(5):595-604. PubMed ID: 15046988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the temporal deposition of extracellular matrix on the mechanical properties of tissue-engineered cartilage.
    Khoshgoftar M; Wilson W; Ito K; van Donkelaar CC
    Tissue Eng Part A; 2014 May; 20(9-10):1476-85. PubMed ID: 24377881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading.
    Ramage L; Nuki G; Salter DM
    Scand J Med Sci Sports; 2009 Aug; 19(4):457-69. PubMed ID: 19538538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principles of cell mechanics for cartilage tissue engineering.
    Shieh AC; Athanasiou KA
    Ann Biomed Eng; 2003 Jan; 31(1):1-11. PubMed ID: 12572651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional extracellular matrix signaling during tissue morphogenesis.
    Gjorevski N; Nelson CM
    Cytokine Growth Factor Rev; 2009; 20(5-6):459-65. PubMed ID: 19896886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The independent role of cyclic flexure in the early in vitro development of an engineered heart valve tissue.
    Engelmayr GC; Rabkin E; Sutherland FW; Schoen FJ; Mayer JE; Sacks MS
    Biomaterials; 2005 Jan; 26(2):175-87. PubMed ID: 15207464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching.
    Gilbert TW; Stewart-Akers AM; Sydeski J; Nguyen TD; Badylak SF; Woo SL
    Tissue Eng; 2007 Jun; 13(6):1313-23. PubMed ID: 17518717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering.
    Sengers BG; Oomens CW; Baaijens FP
    J Biomech Eng; 2004 Feb; 126(1):82-91. PubMed ID: 15171133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in stem cell differentiation directed by material and mechanical cues.
    Lin X; Shi Y; Cao Y; Liu W
    Biomed Mater; 2016 Feb; 11(1):014109. PubMed ID: 26836059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanobioreactors for Cartilage Tissue Engineering.
    Weber JF; Perez R; Waldman SD
    Methods Mol Biol; 2015; 1340():203-19. PubMed ID: 26445841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of biochemical and mechanical cues for tendon tissue engineering.
    Testa S; Costantini M; Fornetti E; Bernardini S; Trombetta M; Seliktar D; Cannata S; Rainer A; Gargioli C
    J Cell Mol Med; 2017 Nov; 21(11):2711-2719. PubMed ID: 28470843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.