These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17945826)

  • 1. FPMOD: a modeling tool for sampling the conformational space of fusion proteins.
    Chiang J; Li I; Pham E; Truong K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4111-4. PubMed ID: 17945826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space.
    Pham E; Chiang J; Li I; Shum W; Truong K
    Structure; 2007 May; 15(5):515-23. PubMed ID: 17502097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a linker library with widely controllable flexibility for fusion protein design.
    Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of fluorescent fusion protein probes.
    Pham E; Truong K
    Methods Mol Biol; 2010; 591():69-91. PubMed ID: 19957124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer.
    Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME
    J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers.
    Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M
    Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research.
    Schmid JA; Birbach A
    Thromb Haemost; 2007 Mar; 97(3):378-84. PubMed ID: 17334504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of the linkers which effectively separate domains of a bifunctional fusion protein.
    Arai R; Ueda H; Kitayama A; Kamiya N; Nagamune T
    Protein Eng; 2001 Aug; 14(8):529-32. PubMed ID: 11579220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering.
    Arai R; Wriggers W; Nishikawa Y; Nagamune T; Fujisawa T
    Proteins; 2004 Dec; 57(4):829-38. PubMed ID: 15390267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease.
    Kimura RH; Steenblock ER; Camarero JA
    Anal Biochem; 2007 Oct; 369(1):60-70. PubMed ID: 17586456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering.
    Huang Z; Zhang C; Xing XH
    Methods Enzymol; 2021; 647():23-49. PubMed ID: 33482990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homogeneous fluorometric assay platform based on novel synthetic proteins.
    Vardar-Schara G; Krab IM; Yi G; Su WW
    Biochem Biophys Res Commun; 2007 Sep; 361(1):103-8. PubMed ID: 17659261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding and applications of Ser/Gly linkers in protein engineering.
    Ceballos-Alcantarilla E; Merkx M
    Methods Enzymol; 2021; 647():1-22. PubMed ID: 33482985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetically encoded Förster resonance energy transfer biosensor for two-photon excitation microscopy.
    Kumagai Y; Kamioka Y; Yagi S; Matsuda M; Kiyokawa E
    Anal Biochem; 2011 Jun; 413(2):192-9. PubMed ID: 21352796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering FRET constructs using CFP and YFP.
    Shimozono S; Miyawaki A
    Methods Cell Biol; 2008; 85():381-93. PubMed ID: 18155471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins.
    van Rosmalen M; Krom M; Merkx M
    Biochemistry; 2017 Dec; 56(50):6565-6574. PubMed ID: 29168376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for Developing Optical Sensors Using a Synthetic Dye-Fluorescent Protein FRET Pair and Computational Modeling and Assessment.
    Mitchell JA; Zhang WH; Herde MK; Henneberger C; Janovjak H; O'Mara ML; Jackson CJ
    Methods Mol Biol; 2017; 1596():89-99. PubMed ID: 28293882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Stat3 (signal transducer and activator of transcription 3) dimerization by fluorescence resonance energy transfer in living cells.
    Kretzschmar AK; Dinger MC; Henze C; Brocke-Heidrich K; Horn F
    Biochem J; 2004 Jan; 377(Pt 2):289-97. PubMed ID: 12974672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based, in silico approaches for the development of novel cAMP FRET reporters.
    Machado M; Pantano S
    Methods Mol Biol; 2015; 1294():41-58. PubMed ID: 25783876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.