These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 17945869)

  • 1. Object segmentation and reconstruction via an oscillatory neural network: interaction among learning, memory, topological organization and gamma-band synchronization.
    Magosso E; Cuppini C; Ursino M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4953-6. PubMed ID: 17945869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Object segmentation and recovery via neural oscillators implementing the similarity and prior knowledge gestalt rules.
    Ursino M; Magosso E; La Cara GE; Cuppini C
    Biosystems; 2006 Sep; 85(3):201-18. PubMed ID: 16635545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of abstract objects via neural oscillators: interaction among topological organization, associative memory and gamma band synchronization.
    Ursino M; Magosso E; Cuppini C
    IEEE Trans Neural Netw; 2009 Feb; 20(2):316-35. PubMed ID: 19171515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding and segmentation of multiple objects through neural oscillators inhibited by contour information.
    Ursino M; La Cara GE; Sarti A
    Biol Cybern; 2003 Jul; 89(1):56-70. PubMed ID: 12836033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.
    Cona F; Zavaglia M; Ursino M
    Int J Neural Syst; 2012 Apr; 22(2):1250003. PubMed ID: 23627589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling segmentation of a visual scene via neural oscillators: fragmentation, discovery of details and attention.
    Ursino M; La Cara GE
    Network; 2004 May; 15(2):69-89. PubMed ID: 15214700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network model of semantic memory linking feature-based object representation and words.
    Cuppini C; Magosso E; Ursino M
    Biosystems; 2009 Jun; 96(3):195-205. PubMed ID: 19758544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural network for learning the meaning of objects and words from a featural representation.
    Ursino M; Cuppini C; Magosso E
    Neural Netw; 2015 Mar; 63():234-53. PubMed ID: 25569782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semantic model to study neural organization of language in bilingualism.
    Ursino M; Cuppini C; Magosso E
    Comput Intell Neurosci; 2010; 2010():350269. PubMed ID: 20204173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated neural model of semantic memory, lexical retrieval and category formation, based on a distributed feature representation.
    Ursino M; Cuppini C; Magosso E
    Cogn Neurodyn; 2011 Jun; 5(2):183-207. PubMed ID: 22654990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning-rate-dependent clustering and self-development in a network of coupled phase oscillators.
    Niyogi RK; English LQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066213. PubMed ID: 20365260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
    Campbell S; Wang D
    IEEE Trans Neural Netw; 1996; 7(3):541-54. PubMed ID: 18263453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity.
    Kazantsev V; Pimashkin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031912. PubMed ID: 17930276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks.
    Brosch T; Neumann H; Roelfsema PR
    PLoS Comput Biol; 2015 Oct; 11(10):e1004489. PubMed ID: 26496502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent interaction of dynamical attractors for object-based selective attention.
    Hoshino O
    Biol Cybern; 2003 Aug; 89(2):107-18. PubMed ID: 12905039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visually induced gamma-band responses in human electroencephalographic activity--a link to animal studies.
    Müller MM; Bosch J; Elbert T; Kreiter A; Sosa MV; Sosa PV; Rockstroh B
    Exp Brain Res; 1996 Nov; 112(1):96-102. PubMed ID: 8951411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections.
    Borisyuk R; Kazanovich Y; Chik D; Tikhanoff V; Cangelosi A
    Neural Netw; 2009; 22(5-6):707-19. PubMed ID: 19616919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning the Gestalt rule of collinearity from object motion.
    Prodöhl C; Würtz RP; von der Malsburg C
    Neural Comput; 2003 Aug; 15(8):1865-96. PubMed ID: 14511516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillatory model of attention-guided object selection and novelty detection.
    Borisyuk RM; Kazanovich YB
    Neural Netw; 2004 Sep; 17(7):899-915. PubMed ID: 15312834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.