These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17945880)

  • 41. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.
    Kaatee RS; Crezee H; Visser AG
    Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal distribution of radio-frequency inductive hyperthermia using an inductive aperture-type applicator: evaluation of the effect of tumour size and depth.
    Kuroda S; Uchida N; Sugimura K; Kato H
    Med Biol Eng Comput; 1999 May; 37(3):285-90. PubMed ID: 10505376
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A new applicator utilizing distributed electrodes for hyperthermia: a theoretical approach.
    Kato H; Uchida N; Kasai T; Ishida T
    Int J Hyperthermia; 1995; 11(2):287-94. PubMed ID: 7790741
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Capacitive heating of phantom and human tumors with an 8 MHz radiofrequency applicator (Thermotron RF-8).
    Song CW; Rhee JG; Lee CK; Levitt SH
    Int J Radiat Oncol Biol Phys; 1986 Mar; 12(3):365-72. PubMed ID: 3957735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of an inductive, non-invasive RF applicator for studying hyperthermia in a rat brain tumour model.
    Heinzl L; Hunt JW; Bernstein M
    Int J Hyperthermia; 1991; 7(2):301-15. PubMed ID: 1880457
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interstitial radiofrequency hyperthermia for brain tumors--preliminary laboratory studies and clinical application.
    Koga H; Mori K; Tokunaga Y
    Neurol Med Chir (Tokyo); 1993 May; 33(5):290-4. PubMed ID: 7687034
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of fat thickness on heating patterns of the microwave applicator MA-151 at 631 and 915 MHz.
    Chou CK; McDougall JA; Chan KW; Luk KH
    Int J Radiat Oncol Biol Phys; 1990 Oct; 19(4):1067-70. PubMed ID: 2211244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of hemispherical radio frequency (RF) capacitive-type electrode free of edge effects for treatment of intracavitary tumors.
    Moriyama M; Kawaguchi A; Yokokawa M; Ikeda S; Kitagaki H; Uchida N
    Acta Med Okayama; 2012; 66(2):155-62. PubMed ID: 22525473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heating characteristics of the TRIPAS hyperthermia system for deep seated malignancy.
    Surowiec A; Bicher HI
    J Microw Power Electromagn Energy; 1995; 30(3):135-40. PubMed ID: 7472918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors.
    Tanaka A; Kuroda M; Inamura K; Kawasaki S; Hiraki Y
    Acta Med Okayama; 1994 Aug; 48(4):211-6. PubMed ID: 7817776
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Study of a brain hyperthermia system providing also passive brain temperature monitoring.
    Karanasiou IS; Uzunoglu NK
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5017-20. PubMed ID: 17946670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstrip-antenna design for hyperthermia treatment of superficial tumors.
    Montecchia F
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cooled microwave transrectal applicator with adjustable directional beam for prostate treatment.
    Debicki PS; Okoniewski M; Okoniewska E; Shrivastava PN; Debicka AM; Baert LV; Petrovich Z
    Int J Hyperthermia; 1995; 11(1):95-108. PubMed ID: 7714374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heating pattern of a single-loop applicator buried in muscle-equivalent phantom material measured at S-band.
    Feldman A; Hagmann M; Roelofs T; Weaver P; Ibana C; Maturan A
    Cancer Lett; 1984 May; 23(1):73-9. PubMed ID: 6744237
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An edge-element based finite element model of microwave heating in hyperthermia: application to a bolus design.
    Kumaradas JC; Sherar MD
    Int J Hyperthermia; 2002; 18(5):441-53. PubMed ID: 12227930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Winner of the "New Investigator Award" at the European Society of Hyperthermia Oncology Meeting 2007. The HYPERcollar: a novel applicator for hyperthermia in the head and neck.
    Paulides MM; Bakker JF; Neufeld E; van der Zee J; Jansen PP; Levendag PC; van Rhoon GC
    Int J Hyperthermia; 2007 Nov; 23(7):567-76. PubMed ID: 18038287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Noninvasive temperature measurement method for hyperthermia treatment using ferromagnetic implant with low curie temperature.
    Mitobe K; Yoshimura N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4384-6. PubMed ID: 19163685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-multiplexed two-channel capacitive radiofrequency hyperthermia with nanoparticle mediation.
    Kim KS; Hernandez D; Lee SY
    Biomed Eng Online; 2015 Oct; 14():95. PubMed ID: 26499058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Characterization of an RF Applicator for In Vitro Tests of Electromagnetic Hyperthermia.
    Ferrero R; Androulakis I; Martino L; Nadar R; van Rhoon GC; Manzin A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets.
    Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.