These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 17945889)

  • 1. Rejection of artifact sources in magnetoencephalogram background activity using independent component analysis.
    Escudero J; Hornero R; Abásolo D; Poza J; Fernández A; López M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5282-5. PubMed ID: 17945889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artifact removal in magnetoencephalogram background activity with independent component analysis.
    Escudero J; Hornero R; Abásolo D; Fernández A; López-Coronado M
    IEEE Trans Biomed Eng; 2007 Nov; 54(11):1965-73. PubMed ID: 18018691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ocular and cardiac artifact rejection for real-time analysis in MEG.
    Breuer L; Dammers J; Roberts TP; Shah NJ
    J Neurosci Methods; 2014 Aug; 233():105-14. PubMed ID: 24954539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding the clinical application of OPM-MEG using an effective automatic suppression method for the dental brace metal artifact.
    Wang R; Fu K; Zhao R; Wang D; Yang Z; Bin W; Gao Y; Ning X
    Neuroimage; 2024 Aug; 296():120661. PubMed ID: 38838840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-delayed decorrelation for the identification of cardiac artifact components in MEG data.
    Sander TH; Lueschow A; Curio G; Trahms L
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():573-6. PubMed ID: 12465241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetoencephalogram background activity analysis in Alzheimer's disease patients using auto mutual information.
    Gómez C; Hornero R; Fernández A; Abasolo D; Escudero J; López M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6181-4. PubMed ID: 17945945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative evaluation of artifact removal in real magnetoencephalogram signals with blind source separation.
    Escudero J; Hornero R; Abásolo D; Fernández A
    Ann Biomed Eng; 2011 Aug; 39(8):2274-86. PubMed ID: 21509634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complexity analysis of the magnetoencephalogram background activity in Alzheimer's disease patients.
    Gómez C; Hornero R; Abásolo D; Fernández A; López M
    Med Eng Phys; 2006 Nov; 28(9):851-9. PubMed ID: 16503184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-to-noise ratio of the MEG signal after preprocessing.
    Gonzalez-Moreno A; Aurtenetxe S; Lopez-Garcia ME; del Pozo F; Maestu F; Nevado A
    J Neurosci Methods; 2014 Jan; 222():56-61. PubMed ID: 24200506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEGnet: Automatic ICA-based artifact removal for MEG using spatiotemporal convolutional neural networks.
    Treacher AH; Garg P; Davenport E; Godwin R; Proskovec A; Bezerra LG; Murugesan G; Wagner B; Whitlow CT; Stitzel JD; Maldjian JA; Montillo AA
    Neuroimage; 2021 Nov; 241():118402. PubMed ID: 34274419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving MEG source localizations: an automated method for complete artifact removal based on independent component analysis.
    Mantini D; Franciotti R; Romani GL; Pizzella V
    Neuroimage; 2008 Mar; 40(1):160-73. PubMed ID: 18155928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model order estimation for blind source separation of multichannel magnetoencephalogram and electroencephalogram signals.
    Hesse CW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3348-51. PubMed ID: 19163425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic and robust noise suppression in EEG and MEG: The SOUND algorithm.
    Mutanen TP; Metsomaa J; Liljander S; Ilmoniemi RJ
    Neuroimage; 2018 Feb; 166():135-151. PubMed ID: 29061529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals.
    Migliorelli C; Alonso JF; Romero S; Mañanas MA; Nowak R; Russi A
    J Neural Eng; 2015 Aug; 12(4):046001. PubMed ID: 26015414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of amplitude and phase statistics for complete artifact removal in independent components of neuromagnetic recordings.
    Dammers J; Schiek M; Boers F; Silex C; Zvyagintsev M; Pietrzyk U; Mathiak K
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2353-62. PubMed ID: 18838360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.
    Barbati G; Porcaro C; Zappasodi F; Rossini PM; Tecchio F
    Clin Neurophysiol; 2004 May; 115(5):1220-32. PubMed ID: 15066548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation.
    Sander TH; Wübbeler G; Lueschow A; Curio G; Trahms L
    IEEE Trans Biomed Eng; 2002 Apr; 49(4):345-54. PubMed ID: 11942726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constrained ICA approach for real-time cardiac artifact rejection in magnetoencephalography.
    Breuer L; Dammers J; Roberts TP; Shah NJ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):405-14. PubMed ID: 24001953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent component approach to the analysis of EEG and MEG recordings.
    Vigário R; Särelä J; Jousmäki V; Hämäläinen M; Oja E
    IEEE Trans Biomed Eng; 2000 May; 47(5):589-93. PubMed ID: 10851802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beamspace magnetoencephalographic signal decomposition in spherical harmonics domain.
    Ozkurt TE; Sun M; Sclabassi RJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5743-6. PubMed ID: 17946327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.