These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 17945962)
1. A possibility of hyperthermia treatment using MRI equipment. Kunisaki J; Saito T; Yamada T; Takemura Y; Niwa T; Inoue T Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6373-5. PubMed ID: 17945962 [TBL] [Abstract][Full Text] [Related]
2. Implant hyperthermia resonant circuit produces heat in response to MRI unit radiofrequency pulses. Niwa T; Takemura Y; Inoue T; Aida N; Kurihara H; Hisa T Br J Radiol; 2008 Jan; 81(961):69-72. PubMed ID: 17998280 [TBL] [Abstract][Full Text] [Related]
3. Experimental validation of hyperthermia SAR treatment planning using MR B1+ imaging. Van den Berg CA; Bartels LW; De Leeuw AA; Lagendijk JJ; Van de Kamer JB Phys Med Biol; 2004 Nov; 49(22):5029-42. PubMed ID: 15609556 [TBL] [Abstract][Full Text] [Related]
4. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip. Xin SX; Gu S; Carluccio G; Collins CM Phys Med Biol; 2015 Jan; 60(1):301-7. PubMed ID: 25503104 [TBL] [Abstract][Full Text] [Related]
5. Non-calorimetric determination of absorbed power during magnetic nanoparticle based hyperthermia. Gresits I; Thuróczy G; Sági O; Gyüre-Garami B; Márkus BG; Simon F Sci Rep; 2018 Aug; 8(1):12667. PubMed ID: 30140063 [TBL] [Abstract][Full Text] [Related]
6. Exploring and validating heating dynamics in a radio-frequency electromagnetic field-based resonant chamber for mouse hyperthermia research. Jiao L; Zhang T; Gao P; Zhou C; Mei X; Zhang W; Lu Y; Zhang L; Zhou Z; Yu Z; He M Electromagn Biol Med; 2024 Jul; 43(3):164-175. PubMed ID: 38859623 [TBL] [Abstract][Full Text] [Related]
7. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Winter L; Oezerdem C; Hoffmann W; van de Lindt T; Periquito J; Ji Y; Ghadjar P; Budach V; Wust P; Niendorf T Radiat Oncol; 2015 Sep; 10():201. PubMed ID: 26391138 [TBL] [Abstract][Full Text] [Related]
8. Developing a multichannel temperature probe for interventional MRI. Shankaranarayanan A; Duerk JL; Lewin JS J Magn Reson Imaging; 1998; 8(1):197-202. PubMed ID: 9500280 [TBL] [Abstract][Full Text] [Related]
9. A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: a comparison of calculated and measured 3-D temperature data sets. Nadobny J; Wlodarczyk W; Westhoff L; Gellermann J; Felix R; Wust P IEEE Trans Biomed Eng; 2005 Mar; 52(3):505-19. PubMed ID: 15759581 [TBL] [Abstract][Full Text] [Related]
10. Radiofrequency heating studies on anesthetized swine using fractionated dipole antennas at 10.5 T. Eryaman Y; Lagore RL; Ertürk MA; Utecht L; Zhang P; Torrado-Carvajal A; Türk EA; DelaBarre L; Metzger GJ; Adriany G; Uğurbil K; Vaughan JT Magn Reson Med; 2018 Jan; 79(1):479-488. PubMed ID: 28370375 [TBL] [Abstract][Full Text] [Related]
11. Slot-line applicator for microwave hyperthermia. Togni P; Drízd'al T; Vrba J; Vannucci L J Microw Power Electromagn Energy; 2009; 43(2):24-30. PubMed ID: 21384712 [TBL] [Abstract][Full Text] [Related]
12. The concept of using multifrequency energy transmission to reduce hot spots during deep-body hyperthermia. Jacobsen S; Melandsø F Ann Biomed Eng; 2002 Jan; 30(1):34-43. PubMed ID: 11874140 [TBL] [Abstract][Full Text] [Related]
13. Optimization of electromagnetic phased-arrays for hyperthermia via magnetic resonance temperature estimation. Kowalski ME; Behnia B; Webb AG; Jin JM IEEE Trans Biomed Eng; 2002 Nov; 49(11):1229-41. PubMed ID: 12450353 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetic-thermal analysis of an RF rectangular resonant cavity applicator for hyperthermia targeting deep-seated tumors using a human model with blood flow and fat layer. Tange Y; Kanai Y; Saitoh Y Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4368-71. PubMed ID: 19163681 [TBL] [Abstract][Full Text] [Related]
15. [MRI-controlled regional hyperthermia]. Peller M; Löffler R; Baur A; Turner P; Abdel-Rahman S; Futschik G; Santl M; Hiddemann W; Reiser M; Issels R Radiologe; 1999 Sep; 39(9):756-63. PubMed ID: 10525633 [TBL] [Abstract][Full Text] [Related]
16. Non-invasive electromagnetic heating techniques and the operational characteristics of the annular phased array. Gibbs FA Front Radiat Ther Oncol; 1984; 18():56-61. PubMed ID: 6706138 [No Abstract] [Full Text] [Related]
17. Double-tuned radiofrequency coil for (19)F and (1)H imaging. Otake Y; Soutome Y; Hirata K; Ochi H; Bito Y Magn Reson Med Sci; 2014; 13(3):199-205. PubMed ID: 24990464 [TBL] [Abstract][Full Text] [Related]
18. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks. Nadobny J; Fähling H; Hagmann MJ; Turner PF; Wlodarczyk W; Gellermann JM; Deuflhard P; Wust P IEEE Trans Biomed Eng; 2002 Nov; 49(11):1348-59. PubMed ID: 12450365 [TBL] [Abstract][Full Text] [Related]
19. Field focusing and focal heating patterns using a hybrid radiofrequency hyperthermia system. Boddie AW; Yamanashi WS; Frazer J; McBride CM; Martin R Med Instrum; 1983; 17(5):358-64. PubMed ID: 6646024 [TBL] [Abstract][Full Text] [Related]
20. Heating properties of re-entrant resonant applicator for brain tumor by electromagnetic heating modes. Shindo Y; Kato K; Tsuchiya K; Yabuhara T; Shigihara T; Iwazaki R; Uzuka T; Takahashi H; Fujii Y Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3609-12. PubMed ID: 18002778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]