These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17945982)

  • 21. MEMS capacitive accelerometer-based middle ear microphone.
    Young DJ; Zurcher MA; Semaan M; Megerian CA; Ko WH
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3283-92. PubMed ID: 22542650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Implantable Piezofilm Middle Ear Microphone: Performance in Human Cadaveric Temporal Bones.
    Zhang JZ; Graf L; Banerjee A; Yeiser A; McHugh CI; Kymissis I; Lang JH; Olson ES; Nakajima HH
    J Assoc Res Otolaryngol; 2024 Feb; 25(1):53-61. PubMed ID: 38238525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An anatomically shaped incus prosthesis for reconstruction of the ossicular chain.
    Lord RM; Mills RP; Abel EW
    Hear Res; 2000 Jul; 145(1-2):141-8. PubMed ID: 10867286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Management of the incus body in ossiculoplasty.
    Capra GG; Ge X; Balough BJ; Shah AN; Turner S; Mullin DP; Pfannenstiel TJ
    Otolaryngol Head Neck Surg; 2013 Mar; 148(3):482-7. PubMed ID: 23302148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of a direct acoustic cochlear stimulator.
    Chatzimichalis M; Sim JH; Huber AM
    Audiol Neurootol; 2012; 17(5):299-308. PubMed ID: 22739432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of a particle placed on the ossicles for microphoneless cochlear implant design.
    Kurt S; Ozsonmez AG
    Proc Inst Mech Eng H; 2021 Apr; 235(4):480-489. PubMed ID: 33297852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure.
    Péus D; Dobrev I; Prochazka L; Thoele K; Dalbert A; Boss A; Newcomb N; Probst R; Röösli C; Sim JH; Huber A; Pfiffner F
    Hear Res; 2017 Aug; 351():88-97. PubMed ID: 28601531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of stimulation sites on the performance of electromagnetic middle ear implant: A finite element analysis.
    Liu H; Wang W; Zhao Y; Yang J; Yang S; Huang X; Liu W
    Comput Biol Med; 2020 Sep; 124():103918. PubMed ID: 32758680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimally invasive laser vibrometry (MIVIB) with a floating mass transducer - A new method for objective evaluation of the middle ear demonstrated on stapes fixation.
    Wales J; Gladiné K; Van de Heyning P; Topsakal V; von Unge M; Dirckx J
    Hear Res; 2018 Jan; 357():46-53. PubMed ID: 29190487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW; Schraven SP
    Otol Neurotol; 2015 Sep; 36(8):1390-8. PubMed ID: 26247138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The middle ear bioelectronic microphone for a totally implantable cochlear hearing device for profound and total hearing loss.
    Maniglia AJ; Abbass H; Azar T; Kane M; Amantia P; Garverick S; Ko WH; Frenz W; Falk T
    Am J Otol; 1999 Sep; 20(5):602-11. PubMed ID: 10503582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feasible pickup from intact ossicular chain with floating piezoelectric microphone.
    Kang HY; Na G; Chi FL; Jin K; Pan TZ; Gao Z
    Biomed Eng Online; 2012 Feb; 11():10. PubMed ID: 22353161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment.
    Schraven SP; Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Rak K; Radeloff A; Hagen R; Gummer AW
    Hear Res; 2016 Oct; 340():179-184. PubMed ID: 27037037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully implantable hearing aid in the incudostapedial joint gap.
    Koch M; Eßinger TM; Stoppe T; Lasurashvili N; Bornitz M; Zahnert T
    Hear Res; 2016 Oct; 340():169-178. PubMed ID: 27041338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetically driven middle ear ossicles with laser vibrometry as a new diagnostic tool to quantify ossicular fixation.
    Peacock J; Dirckx J; von Unge M
    Acta Otolaryngol; 2014 Apr; 134(4):352-7. PubMed ID: 24628334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel implantable hearing system with direct acoustic cochlear stimulation.
    Häusler R; Stieger C; Bernhard H; Kompis M
    Audiol Neurootol; 2008; 13(4):247-56. PubMed ID: 18259077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.