These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17945982)

  • 41. Alternative fixation of an active middle ear implant at the short incus process.
    Schraven SP; Dalhoff E; Wildenstein D; Hagen R; Gummer AW; Mlynski R
    Audiol Neurootol; 2014; 19(1):1-11. PubMed ID: 24192762
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Middle-Ear Sound Transmission Under Normal, Damaged, Repaired, and Reconstructed Conditions.
    Dong W; Tian Y; Gao X; Jung TT
    Otol Neurotol; 2017 Apr; 38(4):577-584. PubMed ID: 28079680
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device.
    Wang X; Hu Y; Wang Z; Shi H
    Hear Res; 2011 Oct; 280(1-2):48-57. PubMed ID: 21554941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of increased stiffness of the incudostapedial joint on the transmission of air-conducted sound by the human middle ear.
    Alian W; Majdalawieh O; Kiefte M; Ejnell H; Bance M
    Otol Neurotol; 2013 Oct; 34(8):1503-9. PubMed ID: 23928510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustic effect of malleus head removal and tensor tympani muscle section on middle ear reconstruction.
    Asai M; Roberson JB; Goode RL
    Laryngoscope; 1997 Sep; 107(9):1217-22. PubMed ID: 9292606
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Malleus-to-footplate ossicular reconstruction prosthesis positioning: cochleovestibular pressure optimization.
    Puria S; Kunda LD; Roberson JB; Perkins RC
    Otol Neurotol; 2005 May; 26(3):368-79. PubMed ID: 15891636
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [In vivo studies of a piezoelectric implantable hearing aid transducer in the cat].
    Plinkert PK; Baumann JW; Lenarz T; Keiner S; Leysieffer H; Zenner HP
    HNO; 1997 Oct; 45(10):828-39. PubMed ID: 9445855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model.
    Nishihara S; Goode RL
    Am J Otol; 1994 Jul; 15(4):485-94. PubMed ID: 8588603
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intraoperative adjustments to optimize active middle ear implant performance.
    Tringali S; Koka K; Deveze A; Ferber AT; Jenkins HA; Tollin DJ
    Acta Otolaryngol; 2011 Jan; 131(1):27-35. PubMed ID: 20873999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of angulation of the vibrating floating mass transducer on stapes velocity.
    Eze N; Mirón A; Rogers G; Jeronimidis G; O'Connor AF; Jiang D
    Otol Neurotol; 2014 Aug; 35(7):1223-7. PubMed ID: 24691505
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Normative data of incus and stapes displacement during middle ear surgery using laser Doppler vibrometry.
    Seidman MD; Standring RT; Ahsan S; Marzo S; Shohet J; Lumley C; Verzal K
    Otol Neurotol; 2013 Dec; 34(9):1719-24. PubMed ID: 23928515
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anatomical vibrations that implantable microphones must overcome.
    Jenkins HA; Pergola N; Kasic J
    Otol Neurotol; 2007 Aug; 28(5):579-88. PubMed ID: 17534199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse.
    Samadi DS; Saunders JC; Crenshaw EB
    Hear Res; 2005 Jan; 199(1-2):11-21. PubMed ID: 15574296
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental study of an adjustable-length prosthesis in a temporal bone model.
    Zhao S; Hato N; Goode RL
    Acta Otolaryngol; 2005 Jan; 125(1):33-7. PubMed ID: 15799571
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Ossicular vibration changes associated with pressure changes in inner ear and cerebrospinal fluid in guinea pigs].
    Shinohara T
    Nihon Jibiinkoka Gakkai Kaiho; 1997 Feb; 100(2):236-43. PubMed ID: 9071124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of middle ear pressure changes on umbo vibration.
    Gyo K; Goode RL
    Auris Nasus Larynx; 1987; 14(3):131-7. PubMed ID: 3451732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Air- and Bone-Conducted Sources of Feedback With an Active Middle Ear Implant.
    Banakis Hartl RM; Easter JR; Alhussaini MA; Tollin DJ; Jenkins HA
    Ear Hear; 2019; 40(3):725-731. PubMed ID: 30199397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Parameters for novel incus replacement prostheses.
    Kaftan H; Böhme A; Martin H
    Eur Arch Otorhinolaryngol; 2016 Sep; 273(9):2411-7. PubMed ID: 26538426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implantable microphones as an alternative to external microphones for cochlear implants.
    Mitchell-Innes A; Morse R; Irving R; Begg P
    Cochlear Implants Int; 2017 Nov; 18(6):304-313. PubMed ID: 28889786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.