These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17945992)

  • 21. Multisite recording of extracellular potentials produced by microchannel-confined neurons in-vitro.
    Claverol-Tinturé E; Cabestany J; Rosell X
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):331-5. PubMed ID: 17278590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities.
    Samba R; Herrmann T; Zeck G
    J Neural Eng; 2015 Feb; 12(1):016014. PubMed ID: 25588201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-property relationships in the optimization of polysilicon thin films for electrical recording/stimulation of single neurons.
    Saha R; Muthuswamy J
    Biomed Microdevices; 2007 Jun; 9(3):345-60. PubMed ID: 17203379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanism of extracellular stimulation of nerve cells on an electrolyte-oxide-semiconductor capacitor.
    Schoen I; Fromherz P
    Biophys J; 2007 Feb; 92(3):1096-111. PubMed ID: 17098803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cladding layer and subsequent heat treatment on hydrogenated amorphous silicon waveguides.
    Zhu S; Lo GQ; Li W; Kwong DL
    Opt Express; 2012 Oct; 20(21):23676-83. PubMed ID: 23188333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of planar microelectrode geometry on neuron stimulation: finite element modeling and experimental validation of the efficient electrode shape.
    Ghazavi A; Westwick D; Xu F; Wijdenes P; Syed N; Dalton C
    J Neurosci Methods; 2015 Jun; 248():51-8. PubMed ID: 25845480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CMOS microelectrode array for the monitoring of electrogenic cells.
    Heer F; Franks W; Blau A; Taschini S; Ziegler C; Hierlemann A; Baltes H
    Biosens Bioelectron; 2004 Sep; 20(2):358-66. PubMed ID: 15308242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model retinal interface based on directed neuronal growth for single cell stimulation.
    Mehenti NZ; Tsien GS; Leng T; Fishman HA; Bent SF
    Biomed Microdevices; 2006 Jun; 8(2):141-50. PubMed ID: 16688573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoluminescence and optical limiting properties of silicon nanowires.
    Pan H; Chen W; Lim SH; Poh CK; Wu X; Feng Y; Ji W; Lin J
    J Nanosci Nanotechnol; 2005 May; 5(5):733-7. PubMed ID: 16010930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers.
    Wang JW; Liu XH; Zhao K; Palmer A; Patten E; Burton D; Mao SX; Suo Z; Huang JY
    ACS Nano; 2012 Oct; 6(10):9158-67. PubMed ID: 22984869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal networks on multielectrode arrays.
    Zemianek JM; Serra M; Guaraldi M; Shea TB
    Biotechniques; 2012 Mar; 52(3):177-82. PubMed ID: 22401551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A system for MEA-based multisite stimulation.
    Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoscale neuroelectrode modification via sub-20 nm silicon nanowires through self-assembly of block copolymers.
    Mokarian-Tabari P; Vallejo-Giraldo C; Fernandez-Yague M; Cummins C; Morris MA; Biggs MJ
    J Mater Sci Mater Med; 2015 Feb; 26(2):120. PubMed ID: 25677116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes.
    Khraiche ML; Jackson N; Muthuswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():777-80. PubMed ID: 19964241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multilayer structure for a spectral imaging sensor.
    Parrein P; Moussy N; Poupinet L; Gidon P
    Appl Opt; 2009 Jan; 48(3):653-7. PubMed ID: 19151837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatible parylene neurocages. Developing a robust method for live neural network studies.
    Tooker A; Meng E; Erickson J; Tai YC; Pine J
    IEEE Eng Med Biol Mag; 2005; 24(6):30-3. PubMed ID: 16382802
    [No Abstract]   [Full Text] [Related]  

  • 40. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.