These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17945992)

  • 41. Growing neuronal islands on multi-electrode arrays using an accurate positioning-μCP device.
    Samhaber R; Schottdorf M; El Hady A; Bröking K; Daus A; Thielemann C; Stühmer W; Wolf F
    J Neurosci Methods; 2016 Jan; 257():194-203. PubMed ID: 26432934
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size.
    Chapman CA; Chen H; Stamou M; Biener J; Biener MM; Lein PJ; Seker E
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7093-100. PubMed ID: 25706691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices.
    Heuschkel MO; Fejtl M; Raggenbass M; Bertrand D; Renaud P
    J Neurosci Methods; 2002 Mar; 114(2):135-48. PubMed ID: 11856564
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective electrical interfaces with the nervous system.
    Rutten WL
    Annu Rev Biomed Eng; 2002; 4():407-52. PubMed ID: 12117764
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of intrinsic a-Si:H films prepared by inductively coupled plasma chemical vapor deposition for solar cell applications.
    Jeong C; Boo S; Jeon M; Kamisako K
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4169-73. PubMed ID: 18047144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Conducting Polymers as Electrode Coatings for Neuronal Multi-electrode Arrays.
    Aqrawe Z; Montgomery J; Travas-Sejdic J; Svirskis D
    Trends Biotechnol; 2017 Feb; 35(2):93-95. PubMed ID: 27422455
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular stimulation window explained by a geometry-based model of the neuron-electrode contact.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1591-9. PubMed ID: 12549741
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrical stimulation of cultured neurons using a simply patterned indium-tin-oxide (ITO) glass electrode.
    Tanamoto R; Shindo Y; Miki N; Matsumoto Y; Hotta K; Oka K
    J Neurosci Methods; 2015 Sep; 253():272-8. PubMed ID: 26185873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrode microchamber for noninvasive perturbation of mammalian cells with nanosecond pulsed electric fields.
    Sun Y; Vernier PT; Behrend M; Marcu L; Gundersen MA
    IEEE Trans Nanobioscience; 2005 Dec; 4(4):277-83. PubMed ID: 16433293
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flexible electrode technology for peripheral nerve interfacing.
    Durand DM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6060. PubMed ID: 18003396
    [No Abstract]   [Full Text] [Related]  

  • 53. Instrumentation: carbon nanotubes on the brain.
    Parpura V
    Nat Nanotechnol; 2008 Jul; 3(7):384-5. PubMed ID: 18654560
    [No Abstract]   [Full Text] [Related]  

  • 54. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.
    Lee K; He J; Clement R; Massia S; Kim B
    Biosens Bioelectron; 2004 Sep; 20(2):404-7. PubMed ID: 15308247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Caged neuron MEA: a system for long-term investigation of cultured neural network connectivity.
    Erickson J; Tooker A; Tai YC; Pine J
    J Neurosci Methods; 2008 Oct; 175(1):1-16. PubMed ID: 18775453
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using TiO2 as a conductive protective layer for photocathodic H2 evolution.
    Seger B; Pedersen T; Laursen AB; Vesborg PC; Hansen O; Chorkendorff I
    J Am Chem Soc; 2013 Jan; 135(3):1057-64. PubMed ID: 23289745
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.
    Weiland JD; Anderson DJ; Humayun MS
    IEEE Trans Biomed Eng; 2002 Dec; 49(12 Pt 2):1574-9. PubMed ID: 12549739
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sputtered iridium oxide for stimulation electrode coatings.
    Mokwa W; Wessling B; Schnakenberg U
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6048-51. PubMed ID: 18003393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Response profiles of murine spiral ganglion neurons on multi-electrode arrays.
    Hahnewald S; Tscherter A; Marconi E; Streit J; Widmer HR; Garnham C; Benav H; Mueller M; Löwenheim H; Roccio M; Senn P
    J Neural Eng; 2016 Feb; 13(1):016011. PubMed ID: 26656212
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural recording and stimulation of dissociated hippocampal cultures using microfabricated three-dimensional tip electrode array.
    Nam Y; Wheeler BC; Heuschkel MO
    J Neurosci Methods; 2006 Sep; 155(2):296-9. PubMed ID: 16494949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.