BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 17946006)

  • 1. Wearable, cuff-less PPG-based blood pressure monitor with novel height sensor.
    Shaltis PA; Reisner A; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():908-11. PubMed ID: 17946006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion based adaptive calibration of pulse transit time measurements to arterial blood pressure for an autonomous, wearable blood pressure monitor.
    McCombie DB; Reisner AT; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():989-92. PubMed ID: 19162824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel blood pressure monitoring device for ubiquitous healthcare services.
    Tatara N; Koizumi H; Mino S; Hayashida S; Aihara K; Shimada J; Uenishi Y; Tochikubo O
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5755-8. PubMed ID: 18003320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel dynamic sensing of wearable digital textile sensor with body motion analysis.
    Yang CM; Lin ZS; Hu CL; Chen YS; Ke LY; Chen YR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4898-901. PubMed ID: 21096657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the irregular pulse detection method in daily life using wearable photoplethysmographic sensor.
    Suzuki T; Kameyama K; Tamura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6080-3. PubMed ID: 19965254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive measurement of systolic blood pressure on the arm utilising photoplethysmography: development of the methodology.
    Laurent C; Jönsson B; Vegfors M; Lindberg LG
    Med Biol Eng Comput; 2005 Jan; 43(1):131-5. PubMed ID: 15742731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations.
    Pärkkä J; Ermes M; Antila K; van Gils M; Mänttäri A; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1511-4. PubMed ID: 18002254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new probe for ankle systolic pressure measurement using photoplethysmography (PPG).
    Jönsson B; Laurent C; Skau T; Lindberg LG
    Ann Biomed Eng; 2005 Feb; 33(2):232-9. PubMed ID: 15771277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Wavelength Photoplethysmography Enabling Continuous Blood Pressure Measurement With Compact Wearable Electronics.
    Liu J; Yan BP; Zhang YT; Ding XR; Su P; Zhao N
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1514-1525. PubMed ID: 30307851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a multimode photoplethysmographic sensor during cuff-induced hypoperfusion.
    Shafique M; Phillips JP; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1024-7. PubMed ID: 21096996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ratpack: wearable sensor networks for animal observation.
    Osechas O; Thiele J; Bitsch J; Wehrle K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():538-41. PubMed ID: 19162712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IEEE-802.15.4-based low-power body sensor node with RF energy harvester.
    Tran TV; Chung WY
    Biomed Mater Eng; 2014; 24(6):3503-10. PubMed ID: 25227063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive measurement of instantaneous radial artery blood pressure. An instrument based on the volume-compensation method.
    Tanaka S; Gao S; Nogawa M; Yamakoshi K
    IEEE Eng Med Biol Mag; 2005; 24(4):32-7. PubMed ID: 16119210
    [No Abstract]   [Full Text] [Related]  

  • 16. A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals.
    Zheng Y; Leung B; Sy S; Zhang Y; Poon CC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5022-5. PubMed ID: 23367056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile monitoring with wearable photoplethysmographic biosensors.
    Asada HH; Shaltis P; Reisner A; Rhee S; Hutchinson RC
    IEEE Eng Med Biol Mag; 2003; 22(3):28-40. PubMed ID: 12845817
    [No Abstract]   [Full Text] [Related]  

  • 18. Wearable technology for bio-chemical analysis of body fluids during exercise.
    Morris D; Schazmann B; Wu Y; Coyle S; Brady S; Fay C; Hayes J; Lau KT; Wallace G; Diamond D
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5741-4. PubMed ID: 19164021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cuffless blood pressure monitoring using hydrostatic pressure changes.
    Shaltis PA; Reisner AT; Asada HH
    IEEE Trans Biomed Eng; 2008 Jun; 55(6):1775-7. PubMed ID: 18714843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control.
    Baek HJ; Chung GS; Kim KK; Kim JS; Park KS
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.