BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17946022)

  • 1. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for the three-dimensional localization of intramyocardial excitation centers using optical imaging.
    Khait VD; Bernus O; Mironov SF; Pertsov AM
    J Biomed Opt; 2006; 11(3):34007. PubMed ID: 16822057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation.
    Hyatt CJ; Zemlin CW; Smith RM; Matiukas A; Pertsov AM; Bernus O
    Opt Express; 2008 Sep; 16(18):13758-72. PubMed ID: 18772987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inference of intramural wavefront orientation from optical recordings in realistic whole-heart models.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Biophys J; 2006 Nov; 91(10):3957-8. PubMed ID: 16935956
    [No Abstract]   [Full Text] [Related]  

  • 5. Intra-myocardial cusp waves and their manifestation in optical mapping signals.
    Bernus O; Zemlin CW; Matiukas A; Hyatt CJ; Pertsov AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1564-7. PubMed ID: 17946905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lenses and effective spatial resolution in macroscopic optical mapping.
    Bien H; Parikh P; Entcheva E
    Phys Med Biol; 2007 Feb; 52(4):941-60. PubMed ID: 17264363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods.
    Bernus O; Wellner M; Mironov SF; Pertsov AM
    Phys Med Biol; 2005 Jan; 50(2):215-29. PubMed ID: 15742940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What can we learn from the optically recorded epicardial action potential?
    Pertsov AM; Zemlin CW; Hyatt CJ; Bernus O
    Biophys J; 2006 Nov; 91(10):3959-60. PubMed ID: 16935958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic optical mapping of excitation in cardiac cell networks with ultra-high spatiotemporal resolution.
    Entcheva E; Bien H
    Prog Biophys Mol Biol; 2006 Oct; 92(2):232-57. PubMed ID: 16330086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope.
    Romero-Borja F; Venkateswaran K; Roorda A; Hebert T
    Appl Opt; 2005 Jul; 44(19):4032-40. PubMed ID: 16004050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning holographic microscopy of three-dimensional fluorescent specimens.
    Indebetouw G; Zhong W
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jul; 23(7):1699-707. PubMed ID: 16783434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth-resolved optical imaging of transmural electrical propagation in perfused heart.
    Hillman EM; Bernus O; Pease E; Bouchard MB; Pertsov A
    Opt Express; 2007 Dec; 15(26):17827-41. PubMed ID: 18592044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain.
    Tian P; Devor A; Sakadzić S; Dale AM; Boas DA
    J Biomed Opt; 2011; 16(1):016006. PubMed ID: 21280912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial localization of cardiac optical mapping with multiphoton excitation.
    Ramshesh VK; Knisley SB
    J Biomed Opt; 2003 Apr; 8(2):253-9. PubMed ID: 12683851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Floated image mapping for integral floating display.
    Kim J; Min SW; Lee B
    Opt Express; 2008 Jun; 16(12):8549-56. PubMed ID: 18545568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution.
    Buytaert JA; Dirckx JJ
    J Biomed Opt; 2007; 12(1):014039. PubMed ID: 17343514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media.
    Tanbakuchi AA; Rouse AR; Gmitro AF
    J Biomed Opt; 2009; 14(4):044024. PubMed ID: 19725735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperspectral fluorescence system for 3D in vivo optical imaging.
    Zavattini G; Vecchi S; Mitchell G; Weisser U; Leahy RM; Pichler BJ; Smith DJ; Cherry SR
    Phys Med Biol; 2006 Apr; 51(8):2029-43. PubMed ID: 16585843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution high-speed panoramic cardiac imaging system.
    Evertson DW; Holcomb MR; Eames MC; Bray MA; Sidorov VY; Xu J; Wingard H; Dobrovolny HM; Woods MC; Gauthier DJ; Wikswo JP
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1241-3. PubMed ID: 18334422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.