BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17946022)

  • 21. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment.
    Prior P; Roth BJ
    Phys Med Biol; 2009 May; 54(10):3015-30. PubMed ID: 19387101
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A low-cost high-efficiency fiber-optic coupler for recording action potentials within the myocardial wall.
    Idriss SF; Pitruzzello AM
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1708-11. PubMed ID: 16916108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials.
    Mironov SF; Vetter FJ; Pertsov AM
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H327-35. PubMed ID: 16428336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberration-free optical refocusing in high numerical aperture microscopy.
    Botcherby EJ; Juskaitis R; Booth MJ; Wilson T
    Opt Lett; 2007 Jul; 32(14):2007-9. PubMed ID: 17632625
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Digital adaptive optics line-scanning confocal imaging system.
    Liu C; Kim MK
    J Biomed Opt; 2015; 20(11):111203. PubMed ID: 26140334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope.
    Zhang Y; Roorda A
    J Biomed Opt; 2006; 11(1):014002. PubMed ID: 16526879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated extended volume imaging of tissue using confocal and optical microscopy.
    Sands GB; Gerneke DA; Smaill BH; Le Grice IJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():133-6. PubMed ID: 17946383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resolution enhancement in a light-sheet-based microscope (SPIM).
    Engelbrecht CJ; Stelzer EH
    Opt Lett; 2006 May; 31(10):1477-9. PubMed ID: 16642144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional surface reconstruction and panoramic optical mapping of large hearts.
    Kay MW; Amison PM; Rogers JM
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1219-29. PubMed ID: 15248538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of light absorbers to alter optical interrogation with epi-illumination and transillumination in three-dimensional cardiac models.
    Ramshesh VK; Knisley SB
    J Biomed Opt; 2006; 11(2):024019. PubMed ID: 16674209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards Depth-Resolved Optical Imaging of Cardiac Electrical Activity.
    Walton RD; Bernus O
    Adv Exp Med Biol; 2015; 859():405-23. PubMed ID: 26238062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation.
    Pop M; Sermesant M; Liu G; Relan J; Mansi T; Soong A; Peyrat JM; Truong MV; Fefer P; McVeigh ER; Delingette H; Dick AJ; Ayache N; Wright GA
    Med Image Anal; 2012 Feb; 16(2):505-23. PubMed ID: 22209561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano-FROG: Frequency resolved optical gating by a nanometric object.
    Extermann J; Bonacina L; Courvoisier F; Kiselev D; Mugnier Y; Le Dantec R; Galez C; Wolf JP
    Opt Express; 2008 Jul; 16(14):10405-11. PubMed ID: 18607452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Confocal fluorescence polarization microscopy in turbid media: effects of scattering-induced depolarization.
    Bigelow CE; Foster TH
    J Opt Soc Am A Opt Image Sci Vis; 2006 Nov; 23(11):2932-43. PubMed ID: 17047721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive optics in spinning disk microscopy: improved contrast and brightness by a simple and fast method.
    Fraisier V; Clouvel G; Jasaitis A; Dimitrov A; Piolot T; Salamero J
    J Microsc; 2015 Sep; 259(3):219-27. PubMed ID: 25940062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis of voltage-sensitive fluorescence signals from three-dimensional myocardial activation patterns.
    Hyatt CJ; Mironov SF; Wellner M; Berenfeld O; Popp AK; Weitz DA; Jalife J; Pertsov AM
    Biophys J; 2003 Oct; 85(4):2673-83. PubMed ID: 14507730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia.
    Schomacker KT; Meese TM; Jiang C; Abele CC; Dickson K; Sum ST; Flewelling RF
    J Biomed Opt; 2006; 11(3):34009. PubMed ID: 16822059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.